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Abstract

This dissertation focuses on extracting the exclusive γ∗n(p)→ pπ−(p) reaction cross

section from deuterium data. The existing γ∗n→ pπ− event generator is modified to

include the spectator (proton) information based on the CD-Bonn potential [28] to

simulate the real data process. With this method, the exclusive quasi-free process is

isolated successfully as demonstrated by the comparison of the spectator momentum

distribution of the simulation with the missing momentum distribution of the data,

and the kinematical final-state-interaction contribution factor RFSI is extracted di-

rectly from the data according to the ratio between the exclusive quasi-free and full

cross sections. The results of this dissertation are new the exclusive and quasi-free

cross sections off neutrons bound in deuterium. Furthermore, the corresponding

structure functions are extracted from those cross sections as well. The experiment

was done in Hall B at the Thomas Jefferson National Laboratory (JLab) by using the

CEBAF Large Acceptance Spectrometer (CLAS) detector, the “e1e” run data off a

liquid deuterium target will provide these final results with a kinematic coverage for

the hadronic invariant mass (W ) up to 1.9 GeV and in the momentum transfer (Q2)

range of 0.4− 1.0 GeV/c2.
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Chapter 1

Introduction and Overview

What’s the origin of more than 98% of the visible mass - that’s everything in the

universe, we sense and see around us? Visible matter is everything made of atoms,

which get their mass mainly from the atomic nucleus. The nuclei of atoms are com-

posed of nucleons, namely protons and neutrons. The proton and neutron, each made

of three valence quarks, are much more massive than the sum of their constituents.

Where does all this “extra” mass come from? In order to answer this question, we

have to understand how the quarks interact via the exchange of gluons, how quarks

bind together via strong interaction, and how gluons interact with each other. The

fundamental theory of the strong interaction is Quantum Chromodynamics (QCD),

which is very successful at predicting reactions with large momentum transfer, Q2,

within the perturbative regime with current quarks and gauge gluons as the funda-

mental degrees of freedom. However when Q2 drops down to the non-perturbative

regime, there is a transition to completely different degrees of freedom, the dressed

quarks and gluons as well as the mesons and nucleons, which prevents us from having

a direct QCD description of the phenomena corresponding to hadronic physics, such

as the structure of the nucleon and its excitations (N∗).

The most fundamental approach to resolve this difficulty is to develop accurate

numerical simulations of QCD on to a four-dimensional Euclidean space-time lattice

(LQCD) [35], which is the only way to rigorously test QCD at present. LQCD makes

significant progress on calculating some basic properties of baryons, such as masses

of ground states [43], as well as low lying exited states [45], however it faces several
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challenging issues. Therefore, it is equally important to develop other complementary

nonperturbative methods based on the QCD approach to interpret the real world

properties, and the Dyson-Schwinger equations (DSEs) are such an approach. It is

based on infinite tower of coupled integral equations [60], which is discussed later.

Alternatively, hadron models with effective degrees of freedom have been constructed

to interpret data, such as constituent quark models [20], MIT-bag models [36], and

Nambu-Jona-Lasinio (NJL) models [41].

All these non-perturbative approaches need experimental data to test and im-

prove their predictions. Therefore we need to accumulate sufficient and precise data

on meson electroproduction reactions to pin down the distance-dependent structure

of the nucleon and its excitations, in order to push the development of quark models

and QCD-based calculations forward. Due to the short lifetimes of Ns∗, it is im-

possible to observe these excitation states directly. In the experiment, we can study

Ns∗ via products of their decays. There are a couple ways to study Ns∗ production,

i.e., electroproduction and photoproduction of pseudo-scalar or vector mesons. The

electromagnetic vertex of the meson electroproduction is well described by Quantum

Electrodynamics (QED), while the hadron scattering governed by the strong inter-

action is the only unknown part in the electroproduction process. Furthermore, the

virtual photon exchange of the electroproduciton allows us to study hadronic proper-

ties at different Q2 regimes, which is crucial in understanding of the internal dynamics

of the strong interaction in the non-perturbative regime. In reactions of meson elec-

troproduction off nucleons, we are interested in the resonance processes, in which a

virtual photon excites the nucleon to its excitated state (N∗), with then decays to

one meson or more and nucleon. Beside this, the non-resonance processes in this

reaction are treated as background in the reaction models to extract the resonance

information.

In addition, the vast majority of the available experimental data are meson elec-
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troproduction off the proton in the hydrogen target. Hence flavor-dependent analyses

of excited light-quark baryons are lacking experimental data off the neutron, which is

due to the fact that there is no free neutron target. Deuterium becomes to be one of

the best alternate targets for neutrons, whose nucleus consists of one proton and one

neutron, because it is the simplest and most loosely bound system of neutron. How-

ever, due to the neutron being bound in the deuteron, a few effects must be studied

in order to extract the neutron information, such as, Fermi motion, off-shell effects,

and final state interactions (FSI). The goal of this work is to provide the exclusive

and quasi-free γ∗n(p)→ pπ−(p) reaction cross sections from deuterium target, as well

as kinematical FSI contribution factor RFSI that can be determined from the data

itself. This thesis work concentrates on the study of the bound neutron resonance

via meson electroproduction, which will improve our knowledge of the Q2 evolution

of the resonance states off the bound nucleon system and aid our understanding of

the structure and interaction of hadrons.

1.1 QCD and Non-Perturbative Approaches

QCD

QCD describes the interaction between quarks and gluons, which we believe are the

fundamental degrees of freedom that make up hadronic matter. Quarks are one type

of fundamental particles, it means that they are not composed of any other particles.

There are six known, electrically-charged, different-flavored quarks, which are listed

in the Tab. 1.1. Each quark has its own antiquark.

Quarks interact with each other only through intermediate agents “gluons”, which

are the exchange particles that couple to the color charge in QCD. This is analogous

to the electromagnetic interaction in which photons are exchanged between electri-

cally charged particles. Similar to photons, gluons are massless, spin-1 particles. The
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Table 1.1: Summary of quark properties.

Name Symbol Charge Isospin (I3) Mass (MeV/c2)
Up u +2/3 +1/2 2.3± 1.2

Down d −1/3 −1/2 4.8± 0.8
Charm c +2/3 0 1275± 25
Strange s −1/3 0 95± 5
Top t +2/3 0 173210± 510

Bottom b −1/3 0 4180± 30

gluons simultaneously carry color and anticolor charge. Since gluons are vectors in

the adjoint representation of color gauge group SU(3), there are eight gluons. By

their exchange the eight gluons mediate the interaction between particles carrying

color charge, i.e., not only the quarks but also the gluons themselves. This is an

important difference to QED, where the electromagnetic field quanta have no charge,

and therefore cannot couple at lowest order with each other. The elementary pro-

cesses of QCD include emission and absorption of gluons (Fig. 1.1(a)); production

and annihilation of quark-antiquark pairs (Fig. 1.1(b)); and coupling three or four

gluons to each other (Fig. 1.1(c) and (d)). QCD is a non-abelian gauge theory whose

Figure 1.1: The fundamental interaction diagrams of QCD [56]: (a) emission of a
gluon by a quark, (b) splitting of a gluon into a quark-antiquark pair, (c) and (d)
self-coupling of gluons.

dynamics are governed by the Lagrangian [52], which is represented by

LQCD =
∑
q

ψ̄q,a(iγµ∂µδab −mqδab)ψq,b −
∑
q

ψ̄q,agsγ
µtCabA

C
µψq,b −

1
4F

A
µνF

Aµν , (1.1)
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where γµ are the Dirac γ matrices. The ψq,a are quark-field spinors for a quark of

flavor q and mass mq, with a color-index a (a = 1 to 3, quarks have three “colors”).

ACµ correspond to the gluon fields, with C running from 1 to 8 (there are 8 kinds of

gluons). Furthermore, tCab (tCab ≡ λCab/2) are eight 3×3 matrices that are the generators

of the SU(3) group. The field tensor FA
µν is given by

FA
µν = ∂µA

A
ν − ∂νAAµ − gsfABCABµACν , (1.2)

where the fABC are the structure constants of the SU(3) group, and gs is the QCD

coupling constant calculated by

αs(Q) = g2
s/4π, (1.3)

αs(Q) = 2π
β0ln(Q/ΛQCD) , (1.4)

β0 = 11− 2
3nf , (1.5)

where nf is the number of quark flavors that are involved in the process, and ΛQCD is

the fundamental cut-off parameter of QCD, whose value is experimentally determined

as ΛQCD ∼ 200 MeV/c [56].

The first term in the Eq.(1.1) represents the part of the free quark fields, the second

term corresponds to the quark-gluon interactions (Fig. 1.1(a) and (b)). The quark

interacts with gluons is in a way similar to the electrons interacting with photons in

QED. Gluons are physical degrees of freedom and therefore must carry energy and

momentum themselves. Thus the third term in the Lagrangian is needed to describe

gluon self-interactions. Since gluons carry color charges, their self-interactions are

responsible for many of the unique and important features of QCD, such as asymptotic

freedom, color confinement, and chiral symmetry breaking [50].

The second term in Eq. (1.5), −2
3nf , comes from quark-antiquark pair screening.

However, the first term, 11, has the opposite sign and comes from the non-linear
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gluon-gluon vertices (Fig. 1.1). Thus the gluons self-coupling causes a color anti-

screening effect.

Three important characteristic QCD features are listed as following

• Asymptotic freedom: From Eq. (1.4), this Q-dependence of the coupling strength

corresponds to the dependence on separation. For very high Q values (very

small distance), the interquark coupling decreases, vanishing asymptotically. In

the limit Q→∞, quarks can be considered as “free”, this is called asymptotic

freedom.

• Confinement: In the very low energy domain (very large distance), the interquark

coupling increases so strongly that it is impossible to detach individual quarks

from hadrons (confinement) [56]. Although the confinement hypothesis has not

been directly derived from QCD.

• Dynamical chiral symmetry breaking: Contrary to confinement, we are able to

understand it better even though it is an other typical low-energy feature of

QCD. Since in the low-energy domain of QCD, the proton is composed of three

valence quarks: two up quarks with mu ∼ 2.3 MeV and one down quark with

md ∼ 4.8 MeV, only contributing about 9.4 MeV to the rest mass of the proton

( 938 MeV). It turns out that chiral symmetry is realized in this regime. The

source of the bulk of the proton’s mass is QDC binding energy, which arises

from QDC dynamical chiral symmetry breaking [57], and an effective quark

mass is generated [36].

Lattice QCD (LQCD)

LQCD is QCD solved on a discrete four dimensional Euclidean space-time lattice

with spacing a, with quark fields placed on sites and gauge fields on links between

sites. The spacing a plays the role of the ultraviolet regulator, rendering the quan-
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tum field theory finite [52]. When a→ 0, the continuum theory is recovered. LQCD

is defined by allowing the numerical evaluation of the path integral, which is based

on a non-perturbation calculation. Progress in LQCD has required a combination

of improvements in formulation, numerical techniques, and in computer technology,

allowing these simulations to calculate correlation. The practical calculation results

of LQCD come with both statistical and systematic errors due to the limitation of

the efficiency of algorithms and the availability of computational resources. The sta-

tistical errors correspond to the use of Monte-Carlo integration, the systematic errors

come from using non-zero values of a. Since LQCD is a regularization of QCD, the

only tunable input parameters for lattice calculation are the strong coupling constant

αs and the quark masses for each flavor, which are determined using experimental

inputs. In this way, if QCD is the correct theory of strong interactions, all predictions

of LQCD have to agree with experimental data, and the nucleon and pion structure

from lattice QCD simulations by using a physical pion mass is achieved [13].

Dyson-Schwinger Equations (DSE)

The DSEs are coupled infinitely tower integral equations, which are a general rela-

tionship between Green’s functions in quantum field theories (QFT) [60]. Solving

these equations provides a solution of QDC. The DSEs include the Bethe-Salpeter

equation (BSE) which is a tool to calculate the properties of relativistic two-body

scattering and bound states. For studies based on DSEs, it is unavoidable to deal

with the infinite tower of coupled integral equations. For practical purposes, the cur-

rent approach of DSEs truncates the tower at some point. This means that the tower

of integral equations must be limited to some n, where n is the maximum number

of legs on any Green’s function included in the self-consistent solution of the equa-

tions [60]. An Ansatz can then be introduced for the omitted terms. There is hope

to use the lattice gauge theory simulations to provide additional insight into the form
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of these truncated functions. One approach of studying the non-preturbative prop-

erties of hadrons is the combination of DSEs and Bethe-Salpeter equations (BSE).

There are some calculations related to this approach, which were performed upon

truncating the (anti)quark-quark interaction to a single gluon exchange, so-called

Rainbow-Ladder truncation [62]. Based on that, the details of recent studies on me-

son spectra have been published in Refs. [31] [32] [38]. Baryons have been studied

in the quark-diquark approximation [63]. Current interest of DSEs and BSE combi-

nation approach is the inclusion of interaction mechanisms beyond the leading term

[62], and in the extension to glueball [61] and tetraquark bound-states [37].

1.2 Single-Pion Electroproduction off the Moving Neutron

Single-pion electroproduction has been the main process in the study of the N −

N∗ transition form factors of the lower mass nucleon resonances such as P33(1232),

P111440, D13(1520), S11(1535), S11(1650), F15(1680), and D33(1700).

Data Status

The low-lying excited states of the proton have been studied in greater detail [19],

there is still very little data available on neutron excitations. Because of the inherent

difficulty in obtaining a free neutron target, a deuterium target is the best alternative.

From the SAID database [4], the π− electroproductions off neutrons in the deuterium

are listed in the Tab. 1.2, in which, the ratio Rπ−/π+ was directly measured for most

available data. Even though the differential cross sections were measured directly,

they are only available for single or couple Q2 values and in parts of the whole

resonance range. We need to accumulate sufficient and precise data for the neutron,

not only to study the isospin dependent structure of the nucleon and its excitations,

but also to aid the development of QCD based calculations and models.

8
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Table 1.2: Summary of the single pion electronproduction off bound neutron in the
deuterium target with Rπ−/π+ = dσ(γν+n→π−+p)

dσ(γν+p→π++n) = Rate(e+d→e+π−+p(p))
Rate(e+d→e+π++n(n)) .

Reaction Observable W value Q2 value Lab/experiment
GeV GeV2

en(p)→ e
′
π−p(p) Rπ−/π+ 2.15, 3.11 1.2, 4.0 Cornell/WSL [17]

ep(n)→ e
′
π+n(n)

en(p)→ e
′
π−p(p) dσ/dΩπ 2.15, 2.65 1.2, 2.0 Cornell/WSL [18]

ep(n)→ e
′
π+n(n)

en(p)→ e
′
π−p(p) Rπ−/π+ 1.28-1.71 0.5 NINA [64]

ep(n)→ e
′
π+n(n)

en(p)→ e
′
π−p(p) Rπ−/π+ 1.3-1.7 1.0 NINA [49]

ep(n)→ e
′
π+n(n)

ep(n)→ e
′
π+n(n) Rπ+/π− 1.16, 1.232 0.0856, 0.0656 ALS [34]

en(p)→ e
′
π−p(p)

en(p)→ e
′
pπ−(p) σL, σT 1.15, 1.6 0.4 JLab-HallA [33]

en(p)→ e
′
pπ−(p) σL, σT 1.95, 2.45 0.6, 1.0, 1.6, 2.45 JLab-HallC [39]

The six simplest pion electroproduction reactions off the free proton, bound pro-

ton, and bound neutron targets are summarized as

γ∗ + p→ π0 + p, (1.6)

γ∗ + p→ π+ + n, (1.7)

γ∗ +D(p)→ π+ + n+ ns, (1.8)

γ∗ +D(p)→ π0 + p+ ns, (1.9)

γ∗ +D(n)→ π− + p+ ps, and (1.10)

γ∗ +D(n)→ π0 + n+ ps. (1.11)

All the listed single-pion reactions under the same experimental conditions are in-

cluded in the “e1e” run, which took data with the CLAS detector at JLab from

December 14th, 2002 to January 24th, 2003. The combined analysis of processes

Eq. (1.6)- (1.10) will provide the best possible experimental information about the

final state interactions and the off shell effects of the bound nucleon, which are cru-

cial to extract the free neutron information. In this thesis, the process Eq. (1.10) is

9
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analyzed, which includes both resonance and non-resonance process, to extract cor-

responding cross sections off the neutron in the deuterium target in the resonance

region. The resonance process of interest Eq. (1.10) is shown in Fig. 1.2, where the

electron emits a virtual photon (γ∗) exciting the neutron to one of its excitations

(N∗), then the resonance decays to a π− and a proton (p). The initial proton in the

deuteron is treated as a spectator (Ps), which will be discussed in Chapter 3 that

discusses how to isolate the quasi-free process.

Figure 1.2: The resonance process of single-pion electroproduction off a neutron in
deuterium. The initial proton in the deuteron is treated as the spectator, named as
Ps.

Kinematic

Before we introduce the kinematics of the scattering from a bound neutron in a

deuteron, we first consider the case of scattering from a free neutron that is at rest

in the lab frame, then the chosen variables Wi and Q2 are defined as:

W rest
i =

√
(qµ + nµ)2 =

√
(pµ + (π−)µ)2 = W rest

f , (1.12)

(Qrest)2 = −(qµ)2 = (eµ − eµ′)2 , (1.13)

where qµ presents the four momentum of the virtual photon. W rest
i and (Qrest)2 cor-

respond to the invariant mass of the photon-nucleon system and the four-momentum

10
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transfer of the virtual photon for this scattering respectively, which are determined

in the leptonic interaction plane that is shown in Fig. 1.6 with the gray color. In

addition, we also need to determine two body final state pµ and (π−)µ. In general,

two final particles need to be described by 4× 2 = 8 components of their four vector

momentum. Indeed, with the knowledge that they are all on mass shell, it gives

two restrictions (E2
j − k2

j = m2
j ; j = 1, 2). Furthermore, the energy momentum

conservation laws impose four additional constraints for four momentum components

of the final particles. So we only need two kinematics variables to determine the

hadronic two body final state. Eventually, we end up with four variables to represent

the γ∗n(p)→ pπ−(p) cross section.

For the kinematics of the process Eq. (1.10) that is the scattering from a bound

neutron in a deuteron, we have to consider the influence on the final cross sections of

Fermi motion, off-shell effects, and the final state interaction, which are introduced

next.

The Fermi Motion

In the process Eq. (1.10), where the initial neutron is moving around “quasi-freely”

in the deuteron in the lab frame. By measuring all final particles e′ , p, and π−

exclusively, energy and momentum conservation imply that the sums of the four-

momenta before and after the reaction are identical:

qµ +Dµ = (π−)µ + pµ + pµs ,

qµ + pµi + nµ = (π−)µ + pµ + pµs ,

(1.14)

where Dµ is the four-momentum of deuteron that is at rest in the lab frame, Dµ =

(0,mD). nµ and pµi correspond to the four-momentum of the neutron and the proton,

respectively, that are moving and loosely bound in the deuteron in that frame. The

outgoing missing proton pµs , which is not directly measured, is reconstructed from the

11
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Eq. (1.14) by

pµs = qµ +Dµ − (π−)µ − pµ, (1.15)

and the momentum of this proton is calculated by

~Ps = ~q − ~π− − ~p. (1.16)

Ignoring the off-shell effects at this moment, we focus on the motion first. In the

quasi-free process of the reaction Eq. (1.10), where the initial proton is treated as a

“spectator” that is totally unaffected by the interaction, thus pµi = pµs in Eq. (1.14)

(ignoring the off-shell effects). Then we can rewrite the Eq. (1.14) by

qµ + nµ = (π−)µ + pµ , (1.17)

and the initial neutron momentum is reconstructed by

~n = ~π− + ~p− ~q. (1.18)

For the quasi-free process, by comparing Eq. 1.16 with Eq. 1.18, we get

~Ps = ~pi = −~n. (1.19)

In contrast to the free neutron case, the neutron is now moving around with the

Fermi momentum, which is reconstructed from Eq. (1.18) and graphed in Fig. 1.3.

This motion causes changes in the kinematics compared to scattering off a neutron

at rest in the lab frame. Thus, in order to define the proper electron scattering

plane, we first boost eµ, (e′)µ, pµ, and (π−)µ from the lab frame into the neutron

rest frame with the boost vector calculated from nµ (Eq. (1.17)). In this frame, the

variables Wi, Wf and Q2 are calculated from Eq. (1.12) and Eq. (1.13), as well as the

electron scattering plane is defined. Then Wf and Q2 are selected to represent the

scattering cross sections off the moving neutron in the deuteron. So for this work,

the final reported cross sections are not influenced by the Fermi momentum of the

initial neutron in the deuteron.

12
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Figure 1.3: The momentum distribution of initial neutron in the exclusive γ∗n (p)→
pπ− (p) process, which is moving in the deuteron in the lab frame.

Off-shell Effects

As mentioned previously, the bound neutron is also off-shell beside moving around

in the deuteron. Even in the quasi-free process (isolating the quasi-free process is

discussed in the Chapter 3), pµi is not equal to pµs due to the fact that the initial

proton pi is off-shell and outgoing “spectator” proton ps is on-shell in the reaction

Eq. (1.10). However the relation ~pi = ~ps = −~n is not influence by the off-shell effects

in the quasi-free process. So we can reconstruct the off-shell neutron four momentum

by nµ = (− ~Ps,Mn) and En =
√

(− ~Ps)2 + (Mn)2. So it is better to choose Wf , which

is well defined and measured directly from p and π−, rather than Wi, to present

the final cross section. In the “spectator” situation, in order to conserve energy and

momentum in the scattering process, we have set

Mn = mn − 2 k2
n

2mn

− 2MeV, (1.20)

reestablishing Wi = Wf . This can be seen in Fig. 1.4, where Wf is calculated by

Eq. (1.12) and radiative corrected Wi is calculated by setting En with Eq. (1.20),
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which are presented by the black and red lines separately, and their peaks match

each other. For other possibleMn settings, we get shifted or smearedWi distributions

(radiative corrected) compared to Wf . The boost vector (from the lab frame to the

CM frame) is calculated using the different Wi and Wf , then the influence of those

different boosts on the final cross section can be quantified. The result shows that

these effects on the final cross sections are marginal and are accounted for as a source

of systematic uncertainties described in Chapter 4.
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Figure 1.4: (Color online) The comparison ofW distributions. Black line presentsWf ,
blue line shows Wi calculated by setting nµ = (− ~Ps, En) (En with Eq. (1.20)). The
other colors present the Wi distribution by setting nµ to (− ~Ps,mn) (cyan), (0,mn)
(magenta), (− ~Ps,mn + 2 k2

n

2mn + 2MeV) (blue), (− ~Ps,mn + k2
n

2mn + 1MeV) (orange), and
(− ~Ps,mn − k2

n

2mn − 1MeV) (green).

The Final State Interaction (FSI)

In the reaction process Eq. (1.10), which is shown in Fig. 1.5 (a), with a | ~Ps|< 200 MeV

cut, the quasi-free process is the dominant process (see Chapter 3). However in
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the resonance process, it is possible to have final state interactions, such as pp re-

scattering and pπ re-scattering shown in Fig. 1.5 (b) and (c) respectively. It corre-

sponds to the situation in which the outgoing proton or π− interacts with the spectator

proton (Ps). Thus, the four momentum of the final state particles are changed due to

these final state interactions. After isolating the quasi-free process, the kinematical

FSI contribution factor RFSI will be extracted from the data itself, and the details

will be discussed in the Chapter 6. It is also possible to have other kinds of FSI,

i.e. in the process Eq. (1.9) or (1.10), it is possible to have π0 + ns → π− + p and

π− + ps → π0 + n final state interactions in these processes, which can increase or

decrease the final state π− and p production. If we want to quantify the contribution

of this kind of FSI from the data itself, a combined analysis of pion electroproduction

off the free proton, the bound proton, and the bound neutron in the “e1e” run is

needed. In this thesis, this kind of final state interactions are not quantified from the

data itself.
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Figure 1.5: Kinematic sketch as in the text for the three leading terms in γ∗ +D →
π− + p + p process (a) quasi-free, (b) pp re-scattering, and (c) pπ− re-scattering.
Diagrams (b) and (c) are two main sources of kinematical final state interactions.
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Boosting of the Kinematic Variables
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Figure 1.6: Kinematics of π− electroproducton off a moving neutron. The leptonic
neutron rest frame plane is formed by eµ and eµ′ , where k, E, k′ , and E ′ are corre-
sponding momentum and energy of the incoming and outgoing electrons. qµ is the
virtual photon four momentum and ν is the transfered energy. The hadronic CM
frame plane is determined by final particles p and π, here θ∗p and θ∗π are their polar
angles and φ∗π the azimuthal angle of π−.

In order to get the correct variables to present the final cross sections of π− elec-

troproduction off the neutron in the deuterium target, we boost first all particles’ four

momenta from the lab frame (deuterium at rest) into the neutron at rest frame with

the boost vector ~β1 = −~n/En, where ~n and En are calculated from nµ (Eq. (1.17)).

Then the invariant mass Wf and the momentum transfer Q2 are calculated by the

Eq. (1.12) and (1.13) in this frame. In addition, by setting the coordinates in this

frame, ẑnrest parallel to the virtual photon direction and ŷnrest perpendicular to the

electron scattering plane, we ensure that x̂nrest is staying in the electron scattering

plane and is set to be x̂ direction in the final coordinate system. Secondly, we di-

rectly boost all particles’ four momenta from the lab frame into the CM frame with

the boost vector ~β2 = −(~p+ ~π−)/(Ep +Eπ−), then set the ẑCM parallel to the virtual

photon direction in this frame. Since the ẑnrest is not as well defined due to off-shell
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effects, it is better to set the final ẑ parallel to ẑCM . The X and Y projections of

the ẑnrest in the CM frame are plotted against each other for final-state-interaction

dominated events and quasi-free events, which are shown in Fig. 1.8 and 1.7, respec-

tively. It turns out that the spread of these distributions around zero correspond to

the angle difference between ẑnrest and ẑCM , which are 5.4◦ for final-state-interaction

dominated events in the exclusive process and < 1◦ for quasi-free events. Although

the final-state-interaction dominated events show significant spread, this coordinate

choice is the best way to present the quasi-free results for the bound neutron data.

The cos θ∗π− and φ∗π− are calculated ultimately in the CM frame. In summary, the

coordinates are set by:

ẑ =
~q∗

|~q∗|
, CM frame

x̂ is in the ~k, ~k′ plane of the n rest frame and perpendicular to ẑ, and,

ŷ = ẑ × x̂,

(1.21)

which are shown in Fig. 1.6.
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Figure 1.7: The X and Y projections of the ẑnrest in the CM frame are plotted against
each other for exclusive quasi-free events.
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Figure 1.8: The X and Y projections of the ẑnrest in the CM frame are plotted against
each other for final-state-interaction dominated events.

Formalism

The cross section for the exclusive γ∗n → pπ− reaction with unpolarized electron

beam and unpolarized free neutron target is given by

d5σ

dE ′dΩ∗π−dΩe′
= Γυ

(
E
′
,Ωe′

) dσ

dΩ∗π−
. (1.22)

Where the virtual photon flux that depends on the matrix elements of the leptonic

interaction is calculated by

Γυ
(
E
′
,Ωe′

)
= α

2π2
E
′

E

Kγ

(1− ε)Q2 . (1.23)

Here α = 1/137 represents the electromagnetic coupling constant, ε corresponds to

the transverse polarization of the virtual photon,

ε =
(

1 + 2
(
|~q|2

Q2

)
tan2 θe

2

)−1

, (1.24)

and the photon equivalent energy is calculated by

Kγ = W 2 −M2
n

2Mn

. (1.25)
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In these equations “∗” denotes that the variable is calculated in the CM frame, all

others are in the neutron at rest frame. Moreover, E is the initial coming electron

energy, E ′ and θe are outgoing election energy and scattering angle. Ωe′ and Ωπ−

correspond to the solid angles of outgoing electron and π−. If we want to represent

the cross sections in W and Q2 bins, the Jacobian factor needs to be applied for the

variables transformation (E ′ ,Ωe′ )→ (W,Q2)

d4σ

dWdQ2dΩ∗π−
= 1
J (W,Q2)

d4σ

dEe′dΩ∗π−dΩe′
= Γυ (Ee′ ,Ωe′ )

J (W,Q2)
dσ

dΩ∗π−
= Γυ

(
W,Q2

) dσ

dΩ∗π−
.

(1.26)

The invariant mass W and virtual photon momentum transferred Q2 are calculated

by the following equations:

W =
√
Q2 +M2

n + 2Mn (E − E ′), (1.27)

Q2 ' 4EE ′sin2 θe
2 = 2EE ′ (1− cos θe) . (1.28)

The Jacobian factor is defined by

J
(
W,Q2

)
=

∣∣∣∣∣∣∣∣
∂W
∂E′

∂W
∂Ω

e
′

∂Q2

∂E′
∂Q2

∂Ω
e
′

∣∣∣∣∣∣∣∣ = 1
2π

∣∣∣∣∣∣∣∣
∂W
∂E′

∂W
∂ cos θ

e
′

∂Q2

∂E′
∂Q2

∂ cos θ
e
′

∣∣∣∣∣∣∣∣
= 1

2π

∣∣∣∣∣∣∣∣
−E(1−cos θ

e
′ )−Mn

W
EE
′

W

2E (1− cos θe′ ) −2EE ′

∣∣∣∣∣∣∣∣
= 2E2E

′ (1− cos θe′ ) + 2MnEE
′

W
− 2E2E

′ (1− cos θe′ )
W

= MnEE
′

πW

(1.29)

From Eq. (1.26) and (1.29) we can calculate the virtual photon flux, which de-

pends on (W,Q2) by

Γυ
(
W,Q2

)
=

Γυ
(
E
′
,Ωe′

)
J (W,Q2) = πW

EE ′Mn

(
α

2π2
E
′

E

Kγ

(1− ε)Q2

)

= α

4π
1

E2M2
n

W (W 2 −M2
n)

(1− ε)Q2 .

(1.30)
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Since Q2 = −qµqµ = |~q|2−ν2 and Q2 ' 4EE ′sin2 θe
2 , ε also can be simplified as

ε =
(

1 + 2
(

1 + ν2

Q2

)
tan2 θe

2

)−1

'
(

1 + 2 Q2 + ν2

4EE ′ −Q2

)−1

(1.31)

The hadronic differential cross section is calculated from the four fold differential

cross section (Eq.(1.32)), which is extracted finally from the experimental yield.

d4σ

dWdQ2dΩ∗π−
= Γυ

(
W,Q2

) dσ

dΩ∗π−
. (1.32)

dσ

dΩ∗π−
= 1

Γυ (W,Q2)
d4σ

dWdQ2dΩ∗π−
. (1.33)

For the exclusive γ∗n(p)→ pπ−(p) reaction, we use the same equations to extract

the hadronic differential cross section by ignoring the off-shell effects when calculating

the virtual photon flux. From now on, W represents Wf , along with Q2 that are

calculated in the neutron rest frame. cos θ∗π− and φ∗π− are calculated from the CM

frame of p and π− system.

1.3 Reaction Models

The direct outputs from experimental data, i.e. cross section and other observables,

are not direct inputs for the non-perturbation theories. Therefore, one must develop

reaction models for interpreting the data in terms of hadron structure calculations.

There have been many approaches to develop those reaction models for investigat-

ing pion electroproduction reactions since 1957’s first approach, developed by Chew,

Goldberger, Low and Nambu (CGLN amplitudes) [21]. In order to investigate the

data in the higher resonance region, where two pion and other mesons productions

become dominant, isobar models [23] had been developed to extract the parameters

of higher mass nucleon resonances. After this, models based on K-matrix effective

Lagrangian [24] were developed to study the ∆ excitation. Two very useful models,

MAID developed in Mainz, Germany [25] and SAID developed at the George Wash-

ington University [16], were used to perform amplitude analyses and determine the
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resonance parameters from the experimental data [19]. In this thesis, we will compare

the final results to these two models.

MAID is coded based on the Unitary isobar model (UIM) [25] to extract the

resonance parameters. The first MAID version (MAID98) was constructed with

P33(1232), P111440, D13(1520), S11(1535), S11(1650), F15(1680), and D33(1700) reso-

nances described in Breit-Wigner form and a non-resonant background constructed

from Born terms and t-channel vector-meson contributions [25]. In this version, the

energy dependent mixing of pseudovector (PV) and pseudoscalar (PS) πNN cou-

plings were introduced in the Born terms to describe the right threshold and higher

energy behavior. Then each partial wave was unitarized up to the two-pion thresh-

old by using Watson’s theorem [26]. The non-resonance background contributions in

this version were non-unitarized and determined by using standard Born terms and

vector-meson exchange. In the MAID2000 version, the non-resonance background

contributions were unitarized for the multipoles up to F-waves according to the pre-

scription of K-matrix theory. Furthermore, some selected data for pion photo- and

electroproduction in the energy range up to W = 1.6 GeV were fitted [40]. Ad-

ditionally, for MAID2003, S31(1620), F35(1905), P131720, P31(1910), F37(1950) and

D33(1700) resonances were included for the first time. In contrast to previous versions,

MAID2003 directly analyzed all the photo- and electroproduction data available since

1960, and made single energy and energy dependent fits independently [26]. For the

most recent MAID2007 version, the Q2 dependence of the Sachs form factors in the

Born terms was replaced by a more recent parameterization, and Q2 evolutions of e.m.

form factors as well as realistic pion and axial form factors have been introduced [26].

The SAID model [16] uses K-matrix formalism to determine pion photoproduction

multipoles. The electroproduction analysis is similarly anchored to the Q2 = 0 pho-

toproduction results, with additional phenomenological factors intended to account

for the Q2 variation.
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Most of the data points fit by these models come from proton measurements. A

very small fraction of the data comes from deuterium target experiments, in which

the ratio of π− production to π+ production is measured, as is listed in the Tab. 1.2.

1.4 Summary

From the above discussions, it is clear that in the absence of fundamental QCD so-

lution in the nucleon and resonance regions, a sufficiently complete electroexcitation

database must be established to pin down the distance-dependent baryon structure

and to aid in the development of a QCD-based strong interaction theory. The follow-

ing chapter will introduce the most complete and advanced experimental facility to

measuring meson electroproduction in the resonance region.
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Chapter 2

Experimental Facility

The data presented here was measured in Hall B at the Thomas Jefferson National

Accelerator Facility (TJNAF), also known as Jefferson Laboratory or JLab, in New-

port News, Virginia, USA.

Figure 2.1: Schematic diagram of the CEBAF accelerator shows the injector (serves
as a source of electrons), linear accelerators (LINAC), recirculation arcs and three
experimental halls.

2.1 Continuous Electron Beam Accelerator Facility (CEBAF)

The schematics of the CEBAF accelerator, which provides an electron beam from

the accelerator to three end stations (Hall A, B, and C) simultaneously is shown in

Fig. 2.1. A 45 MeV electron beam is delivered to the accelerator by a superconduct-
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ing RF injector, then accelerated through two identical linear accelerators (LINACs)

connected by two arc stations. As the electron beam is recirculated up to five succes-

sive orbits, its energy increases to a maximum of 6 GeV. Because of the 1.497GHz

RF structure of the linac cavities, the electron beam bunches are separated by 2 ns

intervals in each experimental hall.

Figure 2.2: (Color online) Schematic view of the CLAS detector, EC–electromagnetic
calorimeter, CC–Cherenkov counter, SC–scintillation counter, DC–Drift Chambers.
The tracks correspond, from top to bottom, to a photon (blue curve), an electron
(red curve) curving toward the beam line, and a proton (purple curve) curving away
from the beam line.

2.2 CEBAF Large Acceptance Spectrometer (CLAS)

In Hall B, the major part of the physics program is based on the CLAS (see Fig. 2.2)

detector. It is designed to allow operation with both electron and photon beams while

providing azimuthal acceptance coverage of almost 2π, the polar acceptance ranges

from 8◦ to 140◦ for charged particles, and 8◦ to 45◦ for neutral particles [46]. The

CLAS magnet coils naturally separate the detector into six identical and independent

sectors (see Fig. 2.3). Each of the CLAS sectors is equipped with an identical set
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of detectors: three layers of drift chambers (DC) for charged particle tracking and

momentum reconstruction, Cherenkov counters (CC) for electron identification and

triggering, scintillation counters (SC) for time of flight measurements and charged

particle identification, and electromagnetic calorimeters (EC) for electron identifi-

cation and triggering. Each of these components will be discussed in detail in the

following sections.

Scintillation counters

Figure 2.3: The azimuthal view of the CLAS with six independent sectors. The
corresponding magnetic field configuration is shown in Figure 2.4b

2.3 Superconducting Toroidal Magnet

The magnet used in CLAS is made of six superconducting coils, which are placed in a

way to generate an azimuthally symmetric field (see Fig. 2.4b) of up to 2 Tesla at the

maximum coil current of 3860 A [46]. The toroidal magnet is an essential component

of the CLAS detector. The charged particles are bent by the magnetic field which

is generated by the torus current. The field generated between a torus coil pair is

shown in Fig. 2.4a. The curvature of charged particles’ trajectory in the magnetic
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field is used to reconstruct their momenta from the drift chamber information. Here

charged particles deflect inward or outward from the beam line depending on both

their charge and the direction of the magnetic field. The orientation of the magnetic

field can be reversed by reversing the torus current. For example, the torus current

of the CLAS “e1e” run, which is the data set analyzed for the results presented here,

is positive. Thus, it bends negatively charged particles inward and positively charged

particles outward from the beam line.

2.4 Drift Chambers

The CLAS toroidal magnet bends charged particles inward or outward from the beam

axis but leaves the azimuthal angle essentially unchanged. Since a particle that leaves

the target and enters a sector then stays within that sector, 18 separate drift chambers

were built to track these charged particles and are located at three radial locations

in sector. These radial locations are referred to as “Regions” [47]. The "Region One"

chambers (R1) surround the target in an area of low magnetic field, the “Region

Two” chambers (R2) are somewhat larger and are situated between the magnet coils

in the area of high field near the point of maximum track sagitta, and the “Region

Three” chambers (R3) are the largest devices, radially located outside of the magnet

coils. These relative positions are shown in Fig. 2.2 and Fig. 2.3.

2.5 Cherenkov Detector

The Cherenkov Counter (CC) [14] installed in the CLAS detector is aimed to separate

scattered electrons from negative pions when they are not relativistic. The design of

the Cherenkov detector aims at maximizing the coverage in each sector (see Fig. 2.6)

up to the polar angle (θ) of 45◦. This is done by covering as much of the available

space as possible with mirrors. In Fig. 2.6, each sector is divided into 18 regions of θ

(known as 18 segments), and each θ segment is divided into two modules. The optics
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(a)

(b)

Figure 2.4: (a) Contours of constant absolute magnetic field for the CLAS toroid
in the mid-plane between two coils. The projection of the coils onto the mid-plane
is shown for reference (b) Magnetic field vectors for the CLAS toroid transverse
to the beam in a plane centered on the target. The length of each line segment
is proportional to the field strength at that point. The six coils are seen in cross
section [46].
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of each module is designed to focus the Cherenkov light into a Winston collector cone

leading into a PMT (seen Fig. 2.5), located in the shadow of the torus coils, so that the

PMTs do not introduce additional holes in the geometrical acceptance of the detector.

A charged particle emits electromagnetic radiation (named as Cherenkov radiation)

while traveling through a dielectric medium at a speed exceeding the velocity of

light in that medium. Since the velocity threshold of Cherenkov light emission is

β = 1/n, where n is the refraction index of the medium, then the corresponding

energy threshold for charged particles is calculated by

E = m√
(1− β2)

= nm√
(n2 − 1)

, (2.1)

where n is the refraction index of the medium, m is the particle mass, and β repre-

sents the velocity of the particle. For CLAS, perfluorobutane(C4F10) was chosen as

the radiator gas for the CC to produce Cherenkov radiation due to its high index of

refraction (n = 1.00153), which results in a high photon yield and low velocity thresh-

old. So the threshold energy of electrons is about 9 MeV (calculated from Eq. (2.1)).

However the negative pions, misidentified as electrons, do not emit the Cherenkov

radiation until their momentum exceeds 2.5 GeV.

Figure 2.5: Optical arrangement of one of the 216 optical modules of the CLAS
Cherenkov detector, showing the optical and light collection components.
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Figure 2.6: A schematic diagram of the CC detector in one of the six sectors.

2.6 Scintillation Counters (SC)

The requirements for the SC system [29] include excellent time resolution for particle

identification, good segmentation for flexible triggering, and prescaling. The SC

system, along with the DC, is used for charged particle identification. It measures

the flight time and track length of particles from the target to one of the scintillator

bars, which are used for charged hadron identification that is discussed in Chapter 3.

The system specifications call for a time resolution of σ = 120 ps at the smallest

angles and 250 ps at the angle above 90◦. A schematic view of an SC system in one

sector of CLAS is shown in Fig. 2.7. Each SC system consists of 57 Bicron BC-408

scintillator paddles mounted in four panels covering the polar angular range between

8◦ and 142◦ and the entire active range in the azimuthal angle φ. The length of the

scintillator paddles varies from 30 cm to 450 cm with a thickness of 5.08 cm. To ease

the fabrication, assembly, and testing of a large number of counters, two scintillator

widths were chosen to build the system. 15-cm-wide scintillators and 2-inch PMTs

were selected for the forward-angle system due to space constraints. For the large-

angle system, 22-cm wide scintillators coupled to bent and twisted light guides and
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2-inch PMTs were selected. The last 18 scintillator paddles are paired into nine logical

counters. This grouping results in the system having a total of 48 logical counters

per sector.

Figure 2.7: A schematic diagram of the SC system in one sector of CLAS. The
scintillation counters are arranged in four panels perpendicular to the beam line.
Each sector has 57 scintillator paddles with two light guides and two PMTs at the
ends of each paddle.

2.7 Electromagnetic Calorimeter

The forward electromagnetic calorimeter (EC) is composed of 39 layers of scintillator

alternated with lead sheets and covers 8◦ < θ < 45◦ in each sector region [15]. For the

purpose of readout, each scintillator layer is made of 36 strips parallel to one side of

the triangle, with the orientation of the strips hence rotated by 120◦ in each successive

layer (see Fig. 2.8). Thus there are three orientations or views (labeled U, V, and

W), each containing 13 layers, which provide stereo information on the location of

energy deposition. Each view is further subdivided into an inner (5 layers) and outer
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(8 layers) stack with the optical signal summed within a stack and sent to a PMT.

The EC of CLAS performs the following tasks:

• triggering and detection of electrons,

• discrimination of electrons and pions, especially at higher momentum nearing

2.5 GeV,

• detection of photons at energies above 200 MeV for π0 and η reconstruction from

2γ decay events, and

• detection of neutrons and separation from photons by using EC timing information.

Figure 2.8: Expanded view of one of the six CLAS electromagnetic calorimeter mod-
ules.
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2.8 Triggering and Data Acquisition

Each CLAS sub-detector has its own electronics to collect all signals. However, a

signal does not have to originate from a real physics event, it can be accidental signal,

which is caused by cosmic rays or electronic noise. So setting up the detector trigger

system helps to select interesting good physics events. Once the trigger system gives

a signal, the data acquisition system (DAQ) collects the signals from all sub-detectors

and records them into the storage space. Those signals are called “raw” data.

2.9 Experiment Condition

Each CLAS experiment is named as a specific run. For example, the CLAS e1e

experiment is called the “e1e” run. Here a run or a run period represents more

than one physical experiment. The “e1e” run lasted 20 beam days at an electron

beam energy of 2.039 GeV, with a 2-cm unpolarized liquid hydrogen or deuterium as

target (see Fig. 2.9) at the beginning of 2003. The target has a conical shape with a

diameter varying from 0.4 to 0.6 cm. Data were taken with a +2250A torus current

and +6000A minitorus current for the main CLAS torus magnets.

Kapton cell wall

Al foil window

Figure 2.9: A schematic diagram of “e1e” target.
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Chapter 3

Data Analysis

In this analysis, the deuterium target data from the “e1e” run is analyzed. The data

processing, particle identification, corrections, fiducial cuts, event selection, and kine-

matical final state interaction correction will be addressed in the following sections.

3.1 Data Processing

The data taken in CLAS is grouped into runs. Here a run is related to a continuous

data taking period. An experiment operator usually ends a run once it reaches a

certain number of events (135MB for an “e1e” run) recorded by the data acquisition

system (DAQ) or when something goes wrong during the data taking process. In this

way, a run data set is split further into reasonable pieces (called run files), which can

be easily isolated from any software and hardware data taking problem. The “e1e”

run period of the liquid deuterium (LD2) target is subdivided into 94 run and 1985

run files related to the electron beam condition, from which we want to carry out

the analysis. Besides these, there are 4 empty target run files, which are taking data

without LD2. The information of the empty target runs is needed to carry out the

background subtraction process, details of which are introduced in the Chapter 5.

The raw data files are “cooked” with the CLAS reconstruction and analysis pro-

gram (RECSIS) to extract information about the detector response and convert the

raw detector data into momenta, vertices, times, and particle information, i.e. charge

and particle ID. In more detail, the “RECSIS” program is in charge of the following

tasks:
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• geometrical matching of each DC track to the corresponding hits in the other

detectors (i.e. CC, SC, and EC),

• identifying the trigger particle (i.e. electron),

• calculating time information (i.e. trigger time, particle times),

• identifying other particles corresponding to their tracks (i.e. p, π−), and

• building an event and writing it to the output file (BOS files).

Basically, we choose and optimize which banks need to be saved in the BOS files to

record outgoing particle information by setting the “tcl” file [5]. Here, in this thesis,

we use the EVNT, DCPB, CCPB, SCPB, and ECPB BOS bank information [6] to

carry out the data analysis. Usually, the processed data is converted in different

formats including these BOS banks. In this analysis, the output file with “ntuple”

format is used because of its ROOT friendly structure.

3.2 Quality Check

In order to reduce the influence of unstable run conditions (due to beam, target,

detector, etc.), it is better to check the run quality first. For the LD2 target run

period, we have 1985 run files that need to be checked. The live time is the total time

when the DAQ is actually recording events. We plot the ratio of exclusive events

to the live-time corrected charge (measured in the Faraday cup) in Fig. 3.1a, then

fit it by the Gaussian function, which is shown in red, to get the corresponding fit

parameters µ and σ. Then the µ− 3σ < ratio < µ+ 3σ cuts shown as two blue lines

in Fig. 3.1a are applied to all files, and only the selected “golden” files between the

two blue lines in Fig. 3.1b are used for the following data analysis, which are also

listed in the reference [7].
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Figure 3.1: (a) shows the exclusive number of events normalized to the live-time
corrected charge for each file, and (b) shows it versus the scaled run number. Here
the red curve shows Gaussian fit function, and two blue lines show the 3σ upper/lower
cut limits.

3.3 Electron Identification

The EVNT bank IDs (electron ID: 11, proton ID: 2212, and π− ID: -211), which mark

particles based on their basic information and some initial cuts performed during the

“cooking” process, are on the cross section level not reliable enough to be used for

particle identification. Thus we need to build effective cuts, which can be applied on

candidate particles to finalize their particle identity. Here the purpose of cutting on

electron candidates is to reduce electronic noise, accidental events, and the negative

pion contamination as much as possible without losing good electron candidates. We

define an electron candidate by satisfying the following requirements

• First negatively charged track: electron detection triggers the DAQ system to

record data from all the sub-detectors of CLAS.

• (DCstat, ECstat, SCstat, and CCstat) bits > 0 [6]: electron should geometrically

match each DC track to the corresponding hits in the other detectors.

• stat bit > 0 [6]: the trajectory of a electron passes the time-based tracking.

The purpose and details of each electron identification cut will be discussed below.
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Minimum Momentum Cut

The forward EC is one of the main trigger components in electroproduction experi-

ments with CLAS. A threshold can be set to require a minimum energy for the trigger.

A study of the inclusive cross section at various beam energies with CLAS [27] results

in a low momentum cut pmin depending on the calorimeter low total threshold (in

millivolt) of the trigger discriminator. In that study the safe electron pmin is obtained

from

pmin(in MeV) = 214 + 2.47× ECthreshold(in mV), (3.1)

where, for the “e1e” run, the ECthreshold = 100 mV and pmin = 461 MeV. So

pelectron > 461 MeV cut is applied on electron candidates at first.

θCC versus Segment Cut

The requirement of the negative DC track with the corresponding signal in the CC is

not good enough to select real electron candidates. Therefore, the θCC cut is applied

to help. Since the torus magnetic field bends the electrons toward the beam line and

CC segments are placed radially according to the CLAS polar angle (see Fig. 2.2), it

is convenient to use θCC (see Fig. 3.2) rather than the θ angle at the vertex. There

should be an one to one correspondence between θCC and CC segment number for

real electron tracks, while background and accidental noise should not show such

correlation. Basically, we can calculate θCC in Fig. 3.2 from

θCC = arcos( | ~pz |
| ~p |

). (3.2)

Here the CC plane equation is Ax+By +Cz +D = 0, with A = −0.000784, B = 0,

C = −0.00168, D = 1, and ~S = (A, B, C) (see CLAS note [53]). In Fig. 3.2,

we can calculate ~P = ~P0 + t~n, where t = h
cosα , and cosα = (~n·~S)

|~S| . Then the θCC

distribution of each CC segment is fit by a Gaussian distribution (see Fig. 3.3a), and

the corresponding fitting parameters µ and σ are obtained. Then µ, µ+3σ, and µ−4σ
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are plotted in Fig. 3.3b as black stars, which are fit by a second degree polynomial

functions. The cuts:

θCCµ − 4σ < θCC < θCCµ + 3σ, (3.3)

accounting for the distribution not being completely symmetric around the mean, are

applied to both experimental data and simulation.
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Figure 3.2: Schematic diagram for the θCC reconstruction. Here ~p0 is the intersec-
tion of the track with the SC plane (read from DCPB bank (x_sc, y_sc, z_sc)),
~n is the normalized direction of the track from the SC plane (read from DCPB
bank(cx_sc, cy_sc, cz_sc)), and ~p is the unbent track to the CC plane.

CC_theta_sector2_seg8
Entries  170254

Mean    22.28

RMS     2.712

Underflow       0
 / ndf 2χ  1.386e+04 / 416

Prob       0

Constant  20.4±  6210 

Mean      0.00± 22.34 
Sigma     0.002± 1.005 

CCθ0 10 20 30 40 50 600

1000

2000

3000

4000

5000

6000
CC_theta_sector2_seg8
Entries  170254

Mean    22.28

RMS     2.712

Underflow       0
 / ndf 2χ  1.386e+04 / 416

Prob       0

Constant  20.4±  6210 

Mean      0.00± 22.34 
Sigma     0.002± 1.005 

sector2, CC segment 8

(a)

CC segment
0 2 4 6 8 10 12 14 16 18 20

θ
C

C

5

10

15

20

25

30

35

40

45

50

1

10

210

310

410

sector2

(b)

Figure 3.3: (a) Example θCC distribution of the 8th CC segment in sector 2, where
the blue curve shows the Gaussian fit function, and the fitting parameters µ and σ
are shown in the statistic box. (b) The θCC versus segment number in sector 2 is
plotted, where µ, µ + 3σ, and µ − 4σ are marked as black stars and fit by a second
degree polynomial functions, which are shown as blue curves.
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The Cut on Number of Photo-electrons

The Cherenkov detector is designed to separate negative pions from electrons. In

the CC, the momentum threshold for electrons and pions are ∼ 9 MeV/c and ∼

2.5 GeV/c, respectively. The CC’s ADC signal is converted to a number of photo-

electrons (Nphe) and multiplied by 10 (Nphe× 10 caused by the reconstruction code).

In order to better eliminate negative pions and background noise, a Nphe×10 > 30 cut

is applied on electron candidates. For example, in Fig. 3.4, the green area under the

Poisson fit function (from Eq. (3.5) marked as red curve) corresponds to safe electron

candidates, and the small peak at Nphe × 10 ∼ 20 contains not only background and

negative pions, but also good electron candidates with low CC efficiency hits. With

the extrapolation of the fitted Poisson function we can quantify those lost candidates

by the calculated red area, which can be recovered by applying the correction factor

(Nphecorrect) as a weight for each accepted event. The weight factor Nphecorrect is

calculated by

Nphecorrect = green area

red area+ green area
=

∫ 450
30 f(x)dx∫ 30

0 f(x)dx+
∫ 450

30 f(x)dx
, (3.4)

where f(x) is the fitted Poisson function (see red curves Fig. 3.4) defined as

f(x) = p0
p

( x
p2

)
1 e−p1

Γ( x
p2

+ 1) , (3.5)

where p0, p1, and p2 are free fit parameters. Then the green and red area are calculated

by integrating the fitted Poisson function (Eq. 3.4). The correction factor is calculated

from the Nphe × 10 distribution of left/right PMT in each CC segment per sector.

After applying the Nphe × 10 > 30 cut, the weight of events is set to be Nphecorrect

rather than 1, and the final cross sections are calculated from those weighted events.
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Figure 3.4: Example Nphe × 10 distributions of left and right PMTs in the CC 10th
segment of sector 2 plotted separately and fit by the Poisson function Eq. (3.5) marked
as red curve.

Sampling Fraction Cut

When high momentum pions exceed the Cherenkov radiation threshold, the separa-

tion of electrons and negative pions becomes impossible by the CC. Thus the EC is

used for separating the electrons from the fast moving pions. Pions and electrons

have different mechanisms of primary energy deposition in the EC. Electrons deposit

their energy mainly by bremsstrahlung and pair production and subsequent showering

reactions. This energy deposition mechanism is momentum dependent. Meanwhile,

pions lose most of their energy due to the ionization, which is here practically in-

dependent of their momentum. Actually, the incident charged particles can interact

with the lead atoms of the EC detector when they are moving through, so the EC can

only measure a fraction of their energy. The fraction is called a sample fraction (SF)
Etotal
p

, which is the ratio of the total energy deposited in the EC to the momentum.

For e−/π− separation, all electron candidates are divided into eight momentum (p)

bins, and in each of them, the Etotal
p

is plotted and fit with Gaussian function (see

Fig. 3.5a). Then the corresponding fit parameters µ, µ+ 3σ, and µ− 3σ are plotted

on Fig. 3.5b as black stars, which are fit by a third degree polynomial functions. The
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Figure 3.5: (a) An example of an Etotal/p distribution is fit with a Gaussian func-
tion (blue line). (b) Etotal/p versus p distribution, where the black lines show the
upper/lower Etotal/p cut limits. (c) Etotal/p versus p distribution after all experimen-
tal data event selections. (d) Etotal/p versus p distribution after all simulation event
selections.

cuts,

(Etotal
pe

)µ − 3σ < Etotal
pe

< (Etotal
pe

)µ + 3σ, (3.6)

are applied to the data. An example Etotal/p distribution of the survival data is shown

in Fig. 3.5c. Since the sampling-fraction distributions of simulated reconstructed

events are shifted compared to the data, modified cuts are built by the same method

as for the data and applied to the simulated reconstructed events. An example

distribution from the simulated events that survive the cut is given in Fig. 3.5d.

3.4 Pion Identification

Similar to the electrons, pions are affected by the geometrical and efficiency effects of

different sub-detectors of CLAS. A pion candidate should satisfy initial requirements

as follow:
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• coincidence with one and only one good electron,

• not the first negatively charged track,

• (DCstat, SCstat) bits > 0 [6]: the pion candidates must have signal from DC and

SC, and

• stat bit > 0 [6]: like for the electron, the trajectory of a pion should pass the

time-based tracking.

Pion ∆T Cut

The time difference ∆Ti between the time calculated by the speed and track length

of the pion candidates and the actual measured SC time tsci should peak at zero for

pions. This time difference is given by

∆Ti = lsci
βic
− tsci + t0 ∼ 0, (3.7)

where βi = vi
c
is the speed of the pion candidate calculated from the momentum and

the assumed mass mi of the pion by

βi =

√√√√ p2
i

m2
i c

2 + p2
i

, (3.8)

and t0 is the start time of each reconstructed event

t0 = tsce −
lsce
c
. (3.9)

Here tsce is the electron time measured from SC, lsce is the path length of the electron

track from the vertex to the SC hit, and c is the speed of light. Then t0 is used as

the reference time for all remaining tracks in that event. The calculated ∆Ti for each

pion candidate is plotted in different momentum bins for each sector, as seen in the

example in Fig. 3.6a for the 0.4 GeV/c < pπ < 0.6 GeV/c bin in sector 3, and then

fit by a Gaussian function to get the parameters µ and σ of the peak. After applying

41



www.manaraa.com

 / ndf 2χ   2482 / 45

Constant  4.166e+01± 2.694e+04 

Mean      0.00031±0.01642 − 

Sigma     0.0003± 0.2367 

T [ns]∆
10− 8− 6− 4− 2− 0 2 4 6 8 10

Y
ie

ld

0

5000

10000

15000

20000

25000

30000  / ndf 2χ   2482 / 45

Constant  4.166e+01± 2.694e+04 

Mean      0.00031±0.01642 − 

Sigma     0.0003± 0.2367 

0.4<p<0.6

(a)

P[GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T∆

10−

8−

6−

4−

2−

0

2

4

6

8

10

1

10

210

310
sector3

(b)

Figure 3.6: (a)Pion ∆T distribution with fitted Gaussian function (red curve) at
0.4 GeV/c < pπ < 0.6 GeV/c for sector 3. (b)Pion ∆T versus pπ distribution with
upper/lower ∆T cut limits for sector 3.

the same method for all covered momentum bins, we get two fitted polynomial curves

for µ− 3σ and µ+ 3σ, which are shown in Fig. 3.6b in an example. Next the cuts,

(∆Tπ−)µ − 3σ < ∆Tπ− < (∆Tπ−)µ + 3σ, (3.10)

will be applied on the initial pion candidates for each detector sector individually.

However, in this way, we will lose some good pion candidates that are shown in side

band peaks in Fig. 3.6b, due to improper time reconstruction. In order to correct

these side band events, we plot the ∆T distribution for each counter in the SC system

per sector to check the side band problem. Figure 3.7a shows an example of a side

band peaking at −3.90 ns and the main zero peak shifted to −0.05 ns as well as the

Gaussian functions fitted for both peaks to get the corresponding fitting parameters

µ1 and µ2. Then two shifts,

∆T = ∆T − µ1(−3.90 ns), for ∆T < −2 ns and (3.11)

∆T = ∆T − µ2(−0.05 ns), for ∆T > −2 ns, (3.12)

are applied to correct for the improper time reconstruction. After the correction,

Fig. 3.7b shows the results. Since the last 18 scintillation paddles of the SC system

are paired into 9 logical counters, it is more likely to have ∆T side bands in the last

42



www.manaraa.com

9 logical counters per sector, as seen in the examples of the ∆T distribution without

and with ∆T shifts for counters from 40 to 48 in sector 3 in Fig. 3.8 and Fig. 3.9

individually. The ∆T shift of each counter per sector are listed in Tab. A.3 and

Tab. A.4 of the Appendix A.
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Figure 3.7: (a) The pion ∆T distribution in counter 40 of sector 3 shows two peaks
at 0.1 ns and 3.9 ns (side band peaks), which are fit by two Gaussian functions (red
curves) to get the shift parameters. (b) The same ∆T distribution with ∆T shift
correction.
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Figure 3.8: The pion ∆T versus pπ distribution with upper/lower ∆T cut limits from
counter 40 to 48 of sector 3.
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Figure 3.9: The pion ∆T versus pπ distribution with upper/lower ∆T cut limits from
counter 40 to 48 of sector 3 after the ∆T shift correction.

3.5 Proton Identification

Similar to the pions, a proton candidate should satisfy initial requirements as follows:

• coincidence with one and only one good electron,

• not the first positively charged track,

• (DCstat, SCstat) bits > 0 [6]: the proton candidates must have signals from both

the DC and the SC, and

• stat bit > 0 [6]: like the electron, the trajectory of a proton should pass the

time-based tracking.

Proton ∆T Cut

For the proton ∆T calculation, the Eq. (3.7) and (3.8) are used by substituting i for

proton candidates. Then, in a similar way as for pions, proton ∆T upper/lower cut
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limits are carried out from the ∆T fit method in individual proton momentum bins

by

(∆Tproton)µ − 3σ < ∆Tproton < (∆Tproton)µ + 3σ, (3.13)

and an example is shown in Fig. 3.10a and Fig. 3.10b. Since improper time recon-

struction is independent of particle type, ∆T shift correction parameters for protons

are the same as pions.
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Figure 3.10: (a) Proton ∆T distribution with Gaussian fit function (red curve) at
0.4 GeV/c < pπ < 0.6 GeV/c for sector 3. (b) Proton ∆T versus pproton distribution
with upper/lower ∆T cut limits for sector 3.

The example plots, which show that the ∆T shift correction parameters for pions

also work well for protons, are presented in Fig. 3.11 and 3.12, which are ∆T versus

pproton distributions without and with a ∆T shift (same as pions). Since protons

are bent outward from the beam line, it is easy to use proton’s ∆T distribution to

test the higher counter number problem. Here, Fig. 3.11 shows that the counter 48

has collected unreasonable amount of events for unknown reason. After the whole

checking process, all events from the counters 48 of all sectors and the counter 17 of

sector 5 are deleted.
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Figure 3.11: The proton ∆T versus pπ distribution with upper/lower ∆T cut limits
from counter 40 to 48 of sector 3.

3.6 Kinematic Corrections

Due to our incomplete knowledge of the actual CLAS detector geometry and mag-

netic field distribution, which is not reproduced precisely in the simulation process,

a momentum correction of electrons needs to be carried out for experimental data

only. In addition, relativistic charged particles other than electrons lose a measurable

part of their energy by traveling through the target and detector materials due to

ionization. Hence, the reconstructed momentum is lower than the initial momentum

of these particles right at the vertex of the reaction. This effect has much more in-

fluence on the heavy charged particles, which are the low energy protons in the π−p

channel, and can lead to mis-determination of kinematic quantities such as missing

mass and missing momentum. This effect is also reproduced in the simulation process

also. Therefore, the energy loss correction needs to be applied to the reconstructed

proton momentum for both experimental reconstructed data and simulation events.
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Figure 3.12: The proton ∆T versus pπ distribution with upper/lower ∆T cut limits
for counter 40 to 48 of sector 3 after the ∆T shift correction.

Electron Momentum Correction

For the electron momentum correction, we used elastic events from the “e1e” run

with a proton target. As described in reference [55], the electron momentum cor-

rection method includes two parts, electron polar angle and momentum magnitude

corrections, which are both developed for each sector individually. An example miss-

ing mass squared distribution for the “spectator” proton is shown in Fig. 3.16. The

comparison between the black (no correction) and blue (with electron momentum cor-

rection) lines shows that the electron momentum correction shifts the missing mass

peak towards its expected value. But it is not enough, we have to carry out the

proton energy loss correction, which is introduced next.

Proton Energy Loss Correction

Original generated protons with momenta from 0 to 2 GeV and uniform polar and

azimuthal angles are passed through the GSIM and RECSIS reconstruction processes
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with all detector materials switched on. The momentum differences between gen-
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Figure 3.13: The differences between generated and reconstructed protons are pre-
sented by the black distributions for different pp at θp = 15◦. The blue lines indicate
the Gaussian fits.

erated and reconstructed protons (δp) are shown in Fig. 3.13, where as the ratio

between the Gaussian fit peak position (in Fig. 3.13) and the corresponding recon-

structed momentum value as a function of the reconstructed proton momentum is

plotted in Fig. 3.14. By fitting the black circles in Fig. 3.14, the dependence of

the momentum correction factor on the reconstructed momentum can be identified

clearly. Furthermore, the dependence of these fit parameters on corresponding θp is

also shown in Fig. 3.15. Finally, the energy loss correction factor (δp) is given by

δp = par[0] + par[1]p+ par[2]/p, (3.14)

where par[0], par[1], and par[2] are the fit parameters that depend on θp. They are

defined by

par[0] = c0 + c1θp − c2,

par[1] = c3 − c4θp + c5(θp)2,

par[2] = c6 − c7θp + c8(θp)2,

(3.15)
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where the parameters ci (i = 0, 1, 2, 3, 4, 5, 6, 7, 8) are listed in Tab. A.5 of the Ap-

pendix A.
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Figure 3.14: The ratio between Gaussian fit peak positions (in Fig. 3.13) and cor-
responding reconstructed momentum values, δp/p, plotted against the reconstructed
proton momentum (p) is presented by the black circles, and the blue lines show the
corresponding fit functions.

After electron momentum and proton energy loss corrections, the Gaussian-fitted

missing mass squared distributions of spectator proton ((qµ + Dµ − (π−)µ − pµ)2)

without any kinematic correction, with only electron momentum correction, and with

both corrections are plotted for each sector to check the quality of kinematic correc-

tions, and typical examples are shown in Fig. 3.16. Then the corresponding fitted

Gaussian means are obtained from these distributions to calculate µ2
mismspector = µ2.

Figure 3.17 shows that the values of µ2
mismspector with both electron and proton mo-

mentum corrections are closer to 0.88 GeV2 (squared proton rest mass value) for all
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Figure 3.15: Fit parameters of δp/p versus (p) distributions plotted against the re-
constructed proton θ is presented by the black points, and the blue lines show the
corresponding fit functions. Here par[0], par[1], and par[2] correspond to the fit pa-
rameters in Eq. (3.14).

sectors.

3.7 Electron Fiducial Cuts

The purpose of the fiducial cuts is to select maximally covered phase space regions

with stable detector efficiencies, which are reproduced well in simulation. Due to the

complex and different properties of the CLAS sub-detectors, the following fiducial

cuts are introduced and applied to both experiment and simulation reconstructed

data.

EC Coordinate U , V , and W Fiducial Cut

When an electron hits the forward EC, it is expected to deposit energy proportional to

its momentum. However, there is a chance that the shower produced by the electron
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Figure 3.16: The example missing mass squared distributions of the spectator without
any kinematic corrections (black line), with only electron momentum corrections
(blue line), and with both electron momentum and proton energy loss corrections
(red line) are plotted for sector 4, where the fit parameters in the statistics legend
box correspond to the red-line Gaussian function fit.

will not be fully deposited in the calorimeter due to hitting it on the edge of the

calorimeter. To avoid this kind of effect, we first cut out the edge of the U , V and

W coordinate planes (see Fig. 2.8) of EC. The cut limits 40 cm < U < 400 cm,

V < 370 cm, and W < 405 cm are illustrated in Fig. 3.18. There is a chance that

the condition of the EC is changed for some particular region. In order to avoid that,

we check U , V , and W distributions for each sector. Additionally it turned out that

there is a hole in the V distribution of sector 3 (see Fig. 3.19). The hole is cut out

by demanding V < 305 cm and V > 321 cm.

φe versus θe Cut

Since the fiducial cut in the φe versus θe plane depends on the momentum of electrons

(pe), we plot the φe distribution for each θe and pe interval per sector, which is

expected to be a flat distribution (see green regions in Fig. 3.21) because the cross

section is φe independent. The empirical shape of this kind of fiducial cut is carried
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Figure 3.17: The µ2
mismspector versus detector sectors without any kinematic corrections

(black squares), with only electron momentum corrections (red triangles), and with
both electron momentum and proton energy loss corrections (blue dots).
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Figure 3.18: The U , V , and W coordinate distributions in the electromagnetic
calorimeter. The green area represents the selected events after the cuts.

out in [30] for the “e1e” run and is formulated as

∆φe = 37.14sin((θe − θmin) π

180◦ )
p1+ p2

θe
+ 1500.0

θ2
e , (3.16)

where ∆φe represents the portion of the azimuthal angle φe accepted by the electron

fiducial cut for all possible corresponding kinematic variables θe and pe. Here θmin is

the acceptable minimum polar angle θe, which is calculated by

θmin = 12.0 + 17.0
pe + 0.14 . (3.17)
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Figure 3.19: The V coordinate distribution in the electromagnetic calorimeter. Red
lines represent the hole cut limits.

Furthermore, p1 = 0.705 + 1.1pe and p2 = −63.1 + 30.0pe are two momentum related

parameters. Finally, the accepted regions are θmin < θe < 50◦ and (sector − 1)60◦ −

∆φe < φsectore < (sector − 1)60◦ + ∆φe, which are the same for experiment and

simulation reconstructed data and are shown inside the blue lines of Fig. 3.20 for

examples.

The Electron Polar Angle (θ) versus Momentum (p) Cut

As seen in Fig. 3.20, there are low efficiency regions (mainly caused by the dead wires

of DC and bad counters of SC) in the sectors 2, 3, and 5, which should be removed by

the “cooking” process and correctly translated to the simulation. However, this is not
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Figure 3.20: θe versus φe distributions of electrons are plotted for six sectors for
experiment (left) and simulation (right) reconstructed data each side by side within
the 0.8 GeV < |~pe| < 1.0 GeV momentum interval. The blue lines show the fiducial
cut boundaries for electrons.

always the case, sometimes the simulation reconstructed events are not reproducing

those low efficiency regions, and this will cause problems in calculating the correct

acceptance of the detector. So, we remove detector low efficiency regions based on the

θ versus p distribution for each final particle in each sector separately. In Fig. 3.22,

the middle black paired lines show boundaries of the removed regions in each sector

for electrons, which are applied simultaneously to experiment and simulation recon-

structed data.

3.8 Pion Fiducial Cuts

The purpose of pion fiducial cuts is very similar to that of electron fiducial cuts. Since

we do not fully understand some of the low efficiency regions of the sub-detectors,

we cannot fully incorporate these effects in the simulation procedure. The solution is

to cut out those regions exactly in the same way for both experiment and simulation

reconstructed data. The following fiducial cuts are carried out for pions.
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Figure 3.21: Example φe distributions of electrons in sector 4 for data with 0.8 GeV <
|~pe| < 1.0 GeV before (blue) and after (green) fiducial cuts.

The Pion φ versus θ Cut

For pions, we also need to cut out the boundary regions of the detector. We initially

plot their φ versus θ distributions in different pπ− momentum bins in each sector as

seen in the examples in Fig. 3.24. Then we project these distributions on to the φ

axis for each θ bin, as shown in Fig. 3.23a. The data is fit by a “trapezoid + constant

background” function (red curve), which is defined [51] by

f =



P5 , φ < P2,

(P4 − P5) φ−P2
P0−P2

+ P5 , P2 ≤ φ < P0,

P4 , P0 ≤ φ ≤ P1,

(P4 − P6) φ−P3
P1−P3

+ P6 , P1 < φ ≤ P3, and

P6 , φ > P3,

(3.18)
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Figure 3.22: θe versus p distributions of electrons in all six sectors are compared for
experiment (left) and simulation (right) reconstructed data simultaneously each side
by side. The top and bottom black lines show the θe cut boundaries, and the middle
paired black lines show removed regions, which are reflected in Fig. 3.20 by the low
event-rate bands.

where all parameters are shown in Fig. 3.23a, and the plateau region of the trapezoid

between parameters P0 and P1 is accepted by the fiducial cut. Every sector with

each momentum and θ bin has its own plateau φ region, and the corresponding fit

parameters P0 and P1 are plotted as boundaries of the θ versus φ distribution (see

Fig. 3.23b) and fit by modified exponential functions

φmaxπ− = C0max(1− e−C1(θ+C2)) + (sector− 1) ∗ 60, and

φminπ− = C0min(1 + e−C1(θ+C2)) + (sector− 1) ∗ 60,
(3.19)

where C1 is a constant fit parameter, however C0max, C0min, and C2 are π− momentum

(pπ−) dependent parameters. In each ∆pπ− = 0.2 GeV interval, the corresponding

C0max, C0min, and C2 are obtained, then the C0max, C0min, and C2 versus pπ− plots
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Figure 3.23: (a) Typical example φ distribution of pions from the 0.2 GeV < |~pπ− | <
0.4 GeV and 28◦ < θπ− < 30◦ intervals in sector 1, which are fit by the function
(Eq. (3.18)) shown by the red line, where the corresponding fit parameters P4, P5,
and P6 are heights of the corresponding plateau regions of the trapezoid function and
P0, P1, P2, and P3 are corresponding φ values of the inflection points. (b) Example
φ versus θ distribution for pions in sector 1 within the same momentum interval.
Corresponding fit parameters P0 and P1 of each θ bin are marked as stars and fit by
the function (Eq. (3.19)) shown by the back line.

are created and fit by

C0max; 0min; 2(pπ−) = par[0] + par[1]Pπ− + par[2]
pπ−

, (3.20)

where the corresponding fit parameters par[0], par[1], and par[2], along with C1, are

all listed in Tab. A.6 of the Appendix A. φmaxπ− and φminπ− for sector 1 are plotted as

two blue curves on the φ versus θ distributions in different pπ− intervals, which are

shown in Fig. 3.24. Finally, in order to check if those fiducial cuts work properly

for both experiment and simulation reconstructed data, they are plotted on example

φ versus θ distributions side by side for sector 1 in Fig. 3.25. Besides applying

φminπ− < φπ− < φmaxπ− on experiment and simulation reconstructed data, θ > θπ
−
min cuts

are also applied. θπ−min is found empirically from θ versus p distributions in Fig. 3.26

by

θπ
−

min = 11.09 + 8.0
0.472pπ− + 0.117 , (3.21)

which is represented by the black vertical lines in Fig. 3.25.
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Figure 3.24: Example φ versus θ distributions of pions after event selection in sector
1 for 0.2 GeV < pπ− < 1.2 GeV within 0.2 GeV increasing steps, and the fiducial cuts
(blue lines) are plotted here for sector 1.

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1−10

1

10

0<p<0.2[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1

10

210

0<p<0.2[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1−10

1

10

0.2<p<0.4[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1

10

210

310

0.2<p<0.4[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1−10

1

10

0.4<p<0.6[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1

10

210

310

0.4<p<0.6[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1−10

1

10

0.6<p<0.8[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1

10

210

310

0.6<p<0.8[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1−10

1

10

0.8<p<1[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1

10

210

310

0.8<p<1[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1−10

1

10

1<p<1.2[GeV]

θ
20 40 60 80 100 120 140

φ

30−

20−

10−

0

10

20

30

1

10

210

310
1<p<1.2[GeV]

Figure 3.25: φ versus θ distributions of pions in different pπ− bins after event selection
are plotted for sector 1 for experiment (left) and simulation (right) reconstructed data
each side by side. The black lines represent the fiducial-cut boundaries.

The Pion Polar Angle (θ) versus Momentum (p) Cut

Like in case of electrons, we have to remove low-efficient regions of the detector for

pions by applying cuts on θ versus p distributions, which are shown in Fig. 3.26 by

paired black lines for both experiment and simulation reconstructed data. For pions,
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the low efficient regions for all sectors only show up in experiment reconstructed data

rather than in the simulation reconstructed data, nevertheless they are cut out for

both experiment and simulation reconstructed data. The cut functions are found

empirically by

θ =


C0 + C1

C2(p+C3)+C4
, sector 1, 3, 4, 5, and 6

C0 + C1
C2p+C3

, sector 2,
(3.22)

where all parameters are listed in Tab. A.1 of the Appendix A.
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Figure 3.26: θ versus p distributions of pions in six sectors are compared for experi-
ment (left) and simulation (right) reconstructed data each side by side. The middle
paired black lines show the removed regions, which are reflected in Fig. 3.25 by the
vertical low event-rate bands, and the bottom black lines represent θ > θπ

−
min cuts .

3.9 Proton Fiducial Cuts

For the proton fiducial cut, we follow the same procedure as for other particles to

only accept stable efficiency regions of the detector. We apply the following cuts on
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both experimental data and simulation.

The Proton φ versus θ Cut

We plot the proton φ versus θ distributions in different momentum bins for each

sector, see examples in Fig. 3.28. A typical projected φ distribution for the 28◦ <

θproton < 30◦ bin is shown in Fig. 3.27a, which is fit by the function Eq. (3.18) to get

the corresponding fit parameters P0 and P1. They are marked as stars in Fig. 3.27b

and are fit by the functions φmaxproton and φminproton given by Eq. (3.23) to establish the

fiducial-cut boundaries for protons. The fit parameters are momentum independent

but different for different sectors (see this behavior in Fig. 3.28). All parameters are

listed in Tab. A.7 in the Appendix A.

φmaxproton = P0(1− e−P1(θ+P2)) + (sector− 1) ∗ 60

φminproton = P0(1 + e−P1(θ+P2)) + (sector− 1) ∗ 60
(3.23)
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p2 P0
P1 P3

P6

(a) θ
0 20 40 60 80 100 120

φ

30−

20−

10−

0

10

20

30

1

10

210

(b)

Figure 3.27: (a) Typical example for a φ distribution of protons from the 0.2 GeV <
|~pproton| < 0.4 GeV and 28◦ < θproton < 30◦ intervals in sector 1, which is fit by the
function Eq. (3.18) and plotted as the red line. The corresponding fit parameters P4,
P5, and P6 are heights of the corresponding plateau regions of the trapezoid function,
and P0, P1, P2, and P3 are the corresponding φ values of the inflection points. (b) The
φ versus θ distribution of protons for sector 1 within the same momentum interval.
Corresponding fit parameters P0 and P1 of each θ bin are marked as stars, fit by the
function Eq. (3.19), and shown by the black lines.
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Figure 3.28: Example φ versus θ distributions for protons in sector 1 for 0.2 GeV <
pproton < 1.8 GeV within 0.2 GeV increasing steps and the fiducial cuts (blue lines)
for sector 1.

In Fig. 3.29, the proton fiducial-cut boundaries φmaxproton and φminproton are plotted as φ

versus θ distributions for experiment and simulation reconstructed data to conclude

that they include all the stable efficiency regions for both.

The Proton Polar Angle (θ) versus Momentum (p) Cut

For protons, we only cut out the low efficient regions of sector 2 and 5, which are

visible in Fig. 3.30, where the cut functions are found empirically by

θ =


C0p

3 + C1p
2 + C2p+ C3 , sector 2

C0(p+ C1)C2 + C3 , sector5− 1

C0(p+ C4)3 + C1(p+ C4)2 + C2 ∗ (p+ C4) + C3 , sector5− 2,

(3.24)

and for which all fit parameters are listed in Tab. A.2 in the Appendix A.
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Figure 3.29: φ versus θ distributions of protons plotted for six sectors for experimental
experiment (left) and simulation (right) reconstructed data each side by side. The
blue lines represent fiducial-cut boundaries.

3.10 Event Selection

With the saved information of all but one final state particles (e′ , π−, and p) and

the deuteron (D) at rest in the lab frame, we finally select and analyze events for the

reaction γ∗n (p)→ pπ− (p) by applying the following cuts.

Exclusive Events Selection

For events that have reconstructed four momenta for e′ , π−, and p, we calculate the

missing “spectator” mass squared M2
s , which is determined by

M2
s = (P µ

e − P
µ

e′
+ P µ

D − P
µ
π− − P

µ
p )2, (3.25)

where P µ
e , P

µ

e′
, P µ

D, P
µ
π− , and P µ

p are the four momenta of the corresponding particles.

In order to select the exclusive process γ∗n (p)→ pπ− (p), we apply the 0.811 GeV2 <

M2
s < 0.955 GeV2 missing mass cut to isolate the “spectator” proton peak (see
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Figure 3.30: θ versus p distributions of protons in all six sectors are compared for
experimental (left) and simulation (right) reconstructed data each side by side. The
middle paired black lines show the removed regions, which are reflected in Fig. 3.29
by the vertical low event-rate bands.

Fig. 3.31), which should be around the proton rest mass squared (∼ 0.88 GeV2).

Quasi-free Exclusive Events Selection

Based on the exclusive events, we apply an additional cut on the missing momentum

of the “spectator” (|~ps|) for both experiment and simulation reconstructed data, which

is shown in Fig. 3.33a. | ~Ps| is calculated by

| ~Ps|=| ~Pe − ~Pe′ − ~Pπ− − ~Pp | . (3.26)

The zoomed in Fig. 3.33b focuses on the low “spectator” momentum distribution

(black line) for experimental data and the detector-reconstructed Monte Carlo (MC)

simulated proton Fermi momentum distribution with the CD-Bonn potential (blue

line) [28]. The comparison between the two curves reveals that the quasi-free process

is absolutely dominant in the | ~Ps|< 200MeV region. When | ~Ps|> 200MeV, the final
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Figure 3.31: The M2
s distribution with the two cut limits represented by the red lines

illustrates the exclusive event selection process.

state interaction becomes first measurable and then even dominant. Since the | ~Ps|

distribution of experimental data is right underneath the simulated Fermi momentum

distribution (blue line) up to 200MeV, we can successfully isolate the quasi-free pro-

cess by applying this cut, and the assummed “spectator” becomes a true spectator

proton. Meanwhile, we also cut away some good quasi-free events with this cut. Here

“r” denotes the factor to correct good quasi-free events outside the | ~Ps|< 200MeV

cut. In order to calculate “r”, the | ~Ps|< 200MeV cut is applied to simulated events

to get the | ~Ps| distribution for each kinematic bin. Then the factor r is calculated

from the simulation reconstructed data by

r(W,Q2, cos θ∗π− , φ∗π−) = N simu−| ~Ps|<200 MeV(W,Q2, cos θ∗π− , φ∗π−)
N simu−qf (W,Q2, cos θ∗π− , φ∗π−) = green

green+ red
,

(3.27)

where N simu−qf represents simulated exclusive quasi-free yields in each kinematic

bin and N simu−| ~Ps|<200 MeV corresponds to the simulation yields in each kinematic

bin after applying | ~Ps|< 200MeV cut. The green and red areas are shown in the

Fig 3.32 to represent the integral of | ~Ps| distribution below and above the 200 MeV

cut individually. Based on the good agreement of the | ~Ps| distribution below 200 MeV

64



www.manaraa.com

between the experimental data and simulation in Fig. 3.32, the r(W,Q2, cos θ∗π− , φ∗π−)

should be the best estimated correction factor for those good quasi-free events lost

by the cut.
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Figure 3.32: (Color online) The | ~Ps| distribution of experimental data (black line)
and simulation (blue line) where “green” and “red” filled areas represent the integral
of the blue distribution from 0 MeV to 200 MeV and above 200 MeV, respectively.
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Figure 3.33: (a)(Color online) The black line represents the missing momentum dis-
tribution (| ~Ps|) of the unmeasured proton from experimental data. Based on the
CD-Bonn potential [28], the Monte Carlo simulated scaled proton momentum distri-
bution leads to the red line and the detector-smeared simulated scaled distribution
to the blue line.(b) The zoomed plot of (a) to investigates this comparison clearly.
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Chapter 4

Simulation

4.1 Introduction

In order to extract the cross sections for the reaction of interest, we need to have a

good understanding of the detector behavior to get precision and accurate estimate

of detector efficiency and acceptance. In this way, by correcting the obtained yield

for the detector acceptance we can estimate the truly produced reaction yield. So, to

obtain the detector acceptance we have to utilize a simulation process as laid out in

the flowchart of Fig. 4.1. The details of each simulation step will be discussed in the

following sections.

Generator

GSIM

GPP

RECSIS

Figure 4.1: Flowchart showing the main steps of the detector and reaction simulation
process. γ∗n(p)→ pπ−(p) events are generated by a realistic event generator, passed
through GSIM [1] and GPP [2], and cooked by RECSIS [3].
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4.2 Event Generator

In this analysis, the electromagnetic multipole table [8] of the MAID2000 model [25]

is used as an input for the event generator. en→ e
′
pπ− events with radiative effects,

according to the prescription of Mo and Tsai [48], are generated by a modified version

of the available “aao_rad” software package (cvs co aoo_rad [9]). Based on the

original “aao_rad” package, for each generated en→ e
′
pπ− event, the initial neutron

mass is set to the neutron rest mass and an additional proton is added as the output

particle. This proton is generated based on the Fermi momentum from the CD-Bonn

potential [28] and the rest proton mass. In this way, the generated proton is not

change kinematics in the scattering process and behaves like a spectator (ps). It is,

along with e′ , p, and π−, reconstructed through the full simulation procedure, which

is the same as the reconstruction procedure applied to the experimental data. After

adding the “spectator” proton in the event generator, the simulated physics process

is the same as the exclusive quasi-free process of the experimental data.

Besides the MAID2000 version, there are MAID98, MAID2003, and MAID2007

versions [26] also available in the “aao_rad” package. In order to determine which

version describes the experimental data best, we compare the W (W = Wf ) and Q2

distributions of the quasi-free exclusive events between different MAID versions and

the data, as shown in Fig. 4.2a and Fig. 4.2b. The comparison of theseW distributions

shows that the MAID2000 version yields resonance peak positions that are closest to

the data. The MAID2007 is the latest version, but the second resonance peak of

that version is shifted relative to the experimental data. About 8 billion events were

generated to cover the entire kinematic range listed in the Tab. 5.1 and a little bit

beyond the range to account for resolution and bin migration effects for a total of

8640 kinematic bins.
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Figure 4.2: (a) W distributions of exclusive quasi-free events of experimental
data (black) and the corresponding simulated distribution for the MAID98 (blue),
MAID2000 (magenta), MAID2003 (green), and MAID2007 (red) versions. (b) Q2

distributions for the experimental events and the corresponding simulatied events of
(a).

4.3 GSIM

After generating the physics events of interest, the propagation of the final state

particles through the CLAS detector is simulated. The available simulation pack-

age based on GEANT 3 libraries (developed at CERN) of the CLAS collaboration,

GSIM [1], propagates each of the particles through all CLAS detector components

from the vertex produced by the event generator and provides the detector response

in terms of raw signals (TDC and ADC) as does the actual CLAS detector. The

GSIM-specific format-free read (“ffread card” [10]) is used as the configuration file of

GSIM to configure which modules will be used in the simulation, which includes the

following information for its command line option [5]:

• energy cut-off in GEANT for various particles in various parts of the detector,

• geometry of the detector,

• magnetic field of the detector,

• target material and geometry, and
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• beam position.

The configuration file of GSIM listed in the reference [5] is used and adapted for this

work only.

4.4 GPP

Although the GSIM simulation package includes all of the detector geometry and

properties, it still overestimates the resolution of the drift chambers and SC system.

So the GSIM Post Processor (GPP [2]) program is used to better match the reso-

lution between experimental and simulation data, i.e. better agreement on the ∆T ,

M2
s , and | ~Ps| distributions of experimental and simulation data, which influence the

results on the event selection level. There are two quantities to be adjusted in the

GPP process. One is the DC smearing factor, which influences the tracking resolu-

tion, and the other is the SC smearing factor that adjusts timing resolution. Since

experimental conditions may change by run, for the “e1e” run, we have to find a

new set of corresponding GPP smearing constants. For GPP parameter setting, we

need to determine the run number (R), the DC smearing scale factor for regions 1,

2, and 3 (a, b, and c), and the SC smearing scale factor (f). R should be set to any

run number belonging to the “e1e” run experimental data set in order to access the

correct calibration constants in the calibration database. Assuming DC regions 1, 2,

and 3 had identical resolutions, the same value is set for a, b, and c. We generated

about 2 million electron-neutron exclusive quasi-free pπ interaction events for each

a = b = c and f combination to pass through the flowchart in Fig. 4.1. The quantity

t0 (Eq. (3.9)) is measured to set the start time of each reconstructed event, which

is used to calculate ∆T for the hadron identification. So we can use it to determine

the right value of f . For the simulation events, we set a = b = c = 2.5 initially,

which is consistent with the “e1e” hydrogen target analysis [2]. Then by gradually

changing the “f” values one obtains the Gaussian fitted σ values of the corresponding
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t0 distributions. In Fig. 6.11, these σ values are presented by black points, which are

fit by a linear function. In this way, we get f = 0.9 to match best the fitted σ value of

the experimental data. In Fig. 6.10, the Gaussian fitted parameters σ show that the

t0 distribution of experimental data and simulation have the same timing resolution

by setting GPP parameters a = b = c = 2.5 and f = 0.9.

DeltaT_ef_hist
Entries  1219382

Mean   0.02459

RMS    0.1541

 / ndf 2χ  245.1 / 52

Constant  4.272e+01± 3.434e+04 

Mean      0.00015± 0.02265 

Sigma     0.0001± 0.1384 

data event start time 
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

0

5000

10000

15000

20000

25000

30000

35000
DeltaT_ef_hist

Entries  1219382

Mean   0.02459

RMS    0.1541

 / ndf 2χ  245.1 / 52

Constant  4.272e+01± 3.434e+04 

Mean      0.00015± 0.02265 

Sigma     0.0001± 0.1384 

DeltaT_ef_hist
Entries    3.733293e+07

Mean  0.03762− 

RMS    0.1394

 / ndf 2χ  7.496 / 45

Constant  4.46e+01± 3.48e+04 

Mean      0.00016±0.03747 − 

Sigma     0.0002± 0.1384 

simulation event start time 
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

0

5000

10000

15000

20000

25000

30000

35000
DeltaT_ef_hist

Entries    3.733293e+07

Mean  0.03762− 

RMS    0.1394

 / ndf 2χ  7.496 / 45

Constant  4.46e+01± 3.48e+04 

Mean      0.00016±0.03747 − 

Sigma     0.0002± 0.1384 

Figure 4.3: Event start time (t0) distributions of the exclusive quasi-free events for
experimental data (left) and simulation with smearing factor f=0.9 (right) are fit by
Gaussian functions (red curves). The corresponding fit parameters are listed in the
statistic boxes, respectively.

The discrepancy between experiment and simulation reconstructed data of the

“spectator” missing mass (M2
s ) distribution, which can later influence our results,

reflects the difference in the drift chamber resolution between experiment and simu-

lation reconstructed data. Similar to the SC smearing factor determination, we fixed

the parameter f = 0.9 and changed a = b = c parameters gradually for the simulation

events. In Fig. 4.5, the Gaussian fitted σ values of M2
s distributions corresponding to

different a = b = c values are plotted as black points and are fit by a linear function.
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Figure 4.4: The σ of t0 versus f from the simulation events are fit by a linear function
(blue), and the red line corresponds to the the σ of t0 from the measured exclusive
quasi-free events. The f value corresponding to the cross point is used to smear the
simulated detector SC resolution.

From the fitted linear function, we finally set the smearing parameters a = b = c = 2.5

for the simulation events, which smear the drift chambers resolution of the simulation

in the same way as the experiment does. We plot the M2
s distributions of the simula-

tion reconstructed events with GPP parameters f = 0.9 and a = b = c = 2.5 and the

experimental reconstructed events in Fig. 6.9, and their Gaussian fitted parameters σ

are equal to each other at σ = 0.01978, which shows the GPP parameters are under

control for this analysis.

4.5 RECSIS

After the generated physics events are processed through GSIM and GPP, the out-

puts of GPP still contain ADC and TDC hit information for each detector compo-

nent. Then the output files must be processed with the same reconstruction software

(RECSIS) that is used for the experimental raw data. Certain modifications however

were implemented in the processing of simulated data [3]. After the processing, the
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Figure 4.5: The fitted σ values of M2
s distributions depending on different a = b = c

values are plotted as black points. These are fit by a linear function (blue). The red
horizontal line represents the fitted σ values ofM2

s distributions from the experimental
reconstructed events. The value of a = b = c corresponding to the cross point is used
to smear the simulated detector DC resolution.
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Figure 4.6: The M2
s distributions of the exclusive quasi-free events for experimental

data (left) and simulation with smearing factors f = 0.9 and a = b = c = 2.5 (right)
are fit by Gaussian functions (red). The corresponding fit parameters are shown in
their statistics legend boxes.

simulated events are analyzed similarly to the experimental events and are used to

obtain the acceptance corrections, which are then applied to the experimental yield

to extract the γ∗n(p) → pπ−(p) cross sections. All the details are discussed in the

following chapters.
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Chapter 5

Corrections and Normalization

The simulated events are used to obtain the acceptance corrections, and the cross

section function of the MAID model is used to calculate the bin centering corrections,

both of which are applied to the final cross sections calculation. Since we present

the final cross sections in the kinematic variable Wf , the radiative effects can only

influence the variable Q2. As a cross check, in Fig. 1.4 of Chapter 1, the radiative

correctedWi distribution, whereWi is calculated by settingMn by Eq. (1.20) of nµ, is

consistent with the Wf distribution. For this work, the radiative effects are marginal

compared to the systematic uncertainties. In addition to these corrections, we also

check for consistency of the experimental data with other known cross sections, such

as inclusive cross section of the process eD → eX. All details of those procedures

will be discussed in the following sections.

5.1 Kinematic Binning

In Chapter 1, we introduced the kinematic variables W = Wf , Q2, cos θ∗π, and φ∗π

in which we present the final cross sections. The range of each kinematic variable

is determined by the kinematic nature of the data, and the bin size is needed to be

chosen as fine as possible to address the structure of the cross section; meanwhile

we also need to minimize the statistical uncertainties to guarantee enough statistics

in each kinematic bin. One possible binning solution is listed in Table 5.1 and is

illustrated in Fig. 5.1 for W range covering the ∆ resonance, the second resonance,

and the third resonance regions. W coverage is narrower at higher Q2 due to the
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kinematic limitations.

Table 5.1: W and Q2 binning of the analysis.

Variable Lower limit Upper limit Number of bins Bin size
W , GeV 1.1 1.9 32 0.025 GeV
Q2, GeV2 0.4 1.0 3 0.2 GeV2

W [GeV]
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

]
2
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20000
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Figure 5.1: W and Q2 binning for the π− electroproduction events, where vertical
and horizontal lines are shown as the lower and upper corresponding bin limits.

We observe the highest statistics in 1.2 GeV < W < 1.225 GeV and 0.4 GeV2 <

Q2 < 0.6 GeV2 bin in Fig. 5.1. We show an example distribution corresponding to

cos θ∗ versus φ∗ distribution with φ∗ binned in 9 bins in Fig. 5.2. Due to the low π−

detector acceptance, even in this highest statistics W and Q2 bin, there are empty

kinematic phase space cells in the very forward and the very backward φ∗π− angles. We

tried to enlarge the bin width of the variable φ∗π− , different choices are presented in

the Table 5.2. However, this method does not solve the empty cells problem except

by increasing the number data points to help the cross section fitting process and
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serve as consistency check. In order to get the proper cross section φ∗ dependence

behavior, three sets of φ∗ bins are finally chosen. These are listed in Tab. 5.2.

Table 5.2: cos θ∗π− and φ∗π− binning of the analysis.

Variable Lower limit Upper limit Number of bins Bin size
cos θ∗π− -1 1 10 0.2
φ∗π− 0◦ 360◦ 9 40◦
φ∗π− 0◦ 360◦ 8 45◦
φ∗π− 0◦ 360◦ 6 60◦

*
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* φ
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Figure 5.2: Example cos θ∗ and φ∗ binning for the π− electroproduction events in
1.2 GeV < W < 1.225 GeV and 0.4 GeV2 < Q2 < 0.6 GeV2 bin, where vertical and
horizontal lines show the lower and the upper bin limits.

5.2 Bin Centering Corrections

The kinematic variables bin-size compromise with our bin-size setting discussed above

reveals nicely that the cross section might vary significantly within each kinematic

bin. In fact, the extracted cross section dσ
dΩ∗

π−
is an average value for each 4 dimensional
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(W,Q2, cos θ∗, φ∗) bin. Because of the possibly non-linear behavior of the cross section

within a bin, the average cross-section value does not necessarily correspond to the

center of the bin. So presenting the final cross section at the center of the bin may not

be accurate. To account for such an error, a correction is applied to the cross sections

for each 4 dimensional (W,Q2, cos θ∗, φ∗π−) bin. This bin-centering correction (RBC)

is calculated as

RBC(W,Q2, cos θ∗, φ∗π−) = σmodelcenter

σmodelaverage

, (5.1)

where σmodelcenter is the cross section calculated by using the parameterization function of

MAID2000 model at the numerical center of each kinematic bin, and σmodelaverage is

σmodelaverage =
∫ x2
x1
σ(x)dx

∆W∆Q2∆ cos θ∗∆φ∗ , (5.2)

where x presents the kinematic bin (W,Q2, cos θ∗, φ∗), x1 and x2 are the limits of

the bin, and σ(x) is the MAID2000 model cross-section function. Figure 5.3 shows

RBC as a function of cos θ∗ and φ∗ for the example bin at W = 1.2125 GeV and

Q2 = 0.5 GeV2.

5.3 Luminosity

Luminosity (L) is the product of the number of incoming beam particles incident on

the target per unit area and per unit time and the total number of target particles

within the beam cross-sectional area [59]. The cross section of the reaction should

be normalized to the integrated luminosity (Lint), which is the integral of L over the

time of the whole experiment. Thus, Lint has dimensions of [area−1]. It is calculated

as

Lint = NeNd =
(
Qtot

e

)
×
(
NAdT lT
Md

)
= 2.6788× 1039 cm−2, (5.3)

where Qtot is the total live time accumulated Faraday cup charge (4.420 mC), which

is collected during the entire experiment production period. Furthermore, e is the

elementary charge (1.6 × 10−19 C), dT is the density of the liquid deuterium target
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Figure 5.3: Bin centering corrections RBC as a function of cos θ∗ and φ∗ in the
W = 1.2125 GeV and Q2 = 0.5 GeV2 bin.

(0.1624 g/cm3, ignoring the temperature and pressure fluctuation of the target sys-

tem), lT is the target length (2 cm), NA is Avogadro’s number (6.02 × 1023 mol−1),

and Md is the molar density of deuterium (2.014 g/mol). This value of Lint is used

in the Eq. (6.1) to calculate the cross section.

5.4 Empty-Target Background Subtraction

The “e1e” empty-target run numbers are 36597, 36617, 36618, and 36619. These

are used to estimate the background originating from the 50 µm-thick Kapton target

walls (see Fig. 2.9) and subtract it from the full-target run data. The liquid Deuterium

target in those runs was emptied. In order to quantify this background, all events

from all empty-target runs are collected, then the same data analysis procedure is

applied to those events. Then, the electron z-vertex (Ze) distributions for full-target

and empty-target events are compared as shown in Fig. 5.4a. In the plot, the FWHM

77



www.manaraa.com

of the full-target Ze distribution (black) shows that the target is 2-cm long. There is

a small peak at 2.58 cm due to the forward foil window (see Fig. 2.9), which should

be exactly at the same position for both full-target and empty-target events. This

peak can be used to judge the quality of the empty-target background subtraction.

We calculate the integrated Faraday cup charge ratio by

Sratio = Qtotal

Qempty

= 4.420 mC
0.467 mC = 9.465, (5.4)

where Qempty is the total live time accumulated Faraday cup charge for all empty-

target runs. Therefore, the empty-target Ze distribution must be multiplied by Sratio

to be compared with the corresponding distribution of the full-target run events.

The scaled Ze distribution of the empty-target (red) in Fig. 5.4a has two peaks for

the Kapton cell wall, and one peak at 2.73 cm related to the forward foil, which

is slightly shifted from the corresponding peak in the full-target event distribution.

The 4 empty-target runs were measured at the end of the “e1e” experiment. During

empty-target runs the whole target system is on average warmer than during the full-

target runs. The corresponding shift-corrected Ze distribution of the empty-target

(red) is plotted in Fig. 5.4b, where the forward foil peak is now consistent with that

of the full-target Ze distribution. We then subtract the Sratio corrected empty-target

Ze distributions from the full-target Ze distribution sector by sector. This procedure

allows us to check that the 2.73 cm peak is vanished properly after subtracting the

empty-target Ze distribution from that of the full-target, examples are shown in

Fig. 5.5. It turns out that the Sratio has been determined correctly and that we can

safely use it to subtract the Sratio scaled empty-target from the full-target events

in each kinematic bin and to extracted the final cross sections with Eq. (6.1). The

absolute amount of this background due to cell walls is less than 1%, and the error

of this background correction is absolutely negligible.
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Figure 5.4: (a) Measured electron vertex (Ze) distributions for full target events
(black) and scaled empty target events (red). (b)The black distribution is kept the
same as (a), and the vertex distribution for scaled empty target events is shifted to
(Ze − 1.5 mm) (red).
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Figure 5.5: Ze distributions for full-LD2-target (black) and scaled empty-target events
(red) are plotted together in one canvas and compared with these of the empty target
subtracted full LD2 target events sector by sector.

5.5 Acceptance Corrections

Acceptance corrections (ARad) are calculated using the Monte Carlo simulated events

for each 4-dimensional bin as

ARad(W,Q2, cos θ∗, φ∗) = NRad
rec (W,Q2, cos θ∗, φ∗)

NRad
thrown(W,Q2, cos θ∗, φ∗) , (5.5)
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where NRad
thrown(W,Q2, cos θ∗, φ∗), known as “thrown events”, represents the number

of events that are generated by the physics event generator “aao_rad” with the

MAID2000 model in each kinematic bin radiative effects included. NRad
rec denotes

the number of events in the same kinematic bin that have gone through the entire

simulation process as shown in Fig. 4.1 and passed all analysis cuts. Those acceptance

corrections are applied to obtain the cross sections bin by bin later.

5.6 Radiative Corrections

The γ∗n(p) → pπ−(p) process in not the only process contributing to the extracted

electroproduction cross section. There are other possible processes (Fig. 5.6) affecting

our results by emitting a additional photon. It is impossible to isolate them on the

level of the event selection procedure, especially when the energy of the emitted

photon is within the detector resolution. So we have to use theory approaches to

correct them, which are called radiative corrections. For this analysis, the approach

developed by Mo and Tsai [48] is used for correcting the final results. The same

amount of en → e
′
pπ− events with and without radiative effects are generated by

the available “aao_rad” and “aao_norad” software packages [9], respectively, by

applying the same electromagnetic multipole table from the MAID2000 model. The

radiative correction factor RC is calculated by

RC(W,Q2, cos θ∗, φ∗) = NRad
thrown(W,Q2, cos θ∗, φ∗)

NnoRad
thrown(W,Q2, cos θ∗, φ∗) , (5.6)

where NnoRad
thrown(W,Q2, cos θ∗, φ∗) known as “thrown events” without radiative effects

represents those events that are generated by the physics event generator “aao_norad”

in each kinematic bin. NRad
thrown(W,Q2, cos θ∗, φ∗) corresponds to the same quantity

used in Eq. (5.5). Finally the RC will be combined with the acceptance corrections

factor ARad Eq. (5.5) to calculated the radiative corrected acceptance ARC , which is
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represented by

ARC(W,Q2, cos θ∗, φ∗) = ARad(W,Q2, cos θ∗, φ∗)RCcorrect(W,Q2, cos θ∗, φ∗),

= NRad
rec (W,Q2, cos θ∗, φ∗)

NRad
thrown(W,Q2, cos θ∗, φ∗)

NRad
thrown(W,Q2, cos θ∗, φ∗)

NnoRad
thrown(W,Q2, cos θ∗, φ∗) ,

= NRad
rec (W,Q2, cos θ∗, φ∗)

NnoRad
thrown(W,Q2, cos θ∗, φ∗) .

(5.7)

This factor is applied to the calculation of the cross sections in the chapter 6, the

example is shown in Eq. (6.1).

(a) (b) (c) (d)

e e' e' e' e'e e e

n nnnp ppp

p- p- p- p-

Figure 5.6: Feynman diagrams of the radiative effects in the π− electroproduction.
(a) and (b) Brehmsstrahlung, (c) Vertex correction, and (e) Vacuum polarization, as
used by [48].

5.7 Background Subtraction

In order to obtain the right number of exclusive events for the process γ∗n (p) →

pπ− (p) from deuterium target data, we need to remove all possible backgrounds

within the M2
s cut region. For this reason, the events of the γ∗p → pπ−π+ process,

considered to be the main source of possible physics background, are simulated by

the double-pion scattering event generator (“genev” [11]) under the same experimen-

tal condition as the “e1e” run. Then, we applied the same data analysis procedure

to these simulated events, and compared their M2
s (calculated from Eq. (3.26)) dis-

tributions with that of the “e1e” run experimental data and the γ∗n(p) → pπ−(p)

simulation events to check the background contributions. The compared results are
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shown in Fig. 5.7. Inside the 0.811 GeV2 < M2
s < 0.955 GeV2 cut region, there is

no γ∗p→ pπ−π+ background contribution below 1.1 GeV2. Furthermore, in order to

check the arbitrary background contribution, we compare the M2
s distributions for

experimental events with simulated γ∗n (p) → pπ− (p) events bin by bin. Typical

example plots are shown in Fig. 5.8. The M2
s distributions of simulated events (red

points) are normalized to the data distribution by the integral of their M2
s cut areas.

In summary, from these above comparisons, there is no need to do any background

subtraction for the exclusive γ∗n (p)→ pπ− (p) process in the “e1e” run.
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Figure 5.7: M2
s distributions for measured (black) and simulated γ∗n (p) → pπ−(p)

(blue), as well as simulated γ∗p→ pπ−π+ events are plotted with the M2
s cut limits.

5.8 Inclusive Cross Section

In order to cross check the determined luminosity in the deuteron-target measure-

ment, we extract and compare the cross section of the inclusive scattering eD → e
′
X

process to Osipenko’s world-data parameterization results [54]. In addition to this,

we need to check if the problem of the Cherenkov counter not working properly during

the hydrogen target period [30] is presented also in the deuteron target data.

For inclusive scattering, since the cross section only depends on two kinematical

variables, it is convenient to choose W and Q2 as binning variables. Then, the

82



www.manaraa.com

]2 [GeV2
sM

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
ev

en
t

0

50

100

150

200

250

300

data

-π+p->p+*γsimulated 

o=100πφ, and 2=0.5 GeV2W=1.2125 GeV,Q

]2 [GeV2
sM

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ev
en

t

0

20

40

60

80

100

120

140

160

180

data

-π+p->p+*γsimulated 

o=140πφ, and 2=0.5 GeV2W=1.2125 GeV,Q

]2 [GeV2
sM

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ev
en

t

0

50

100

150

200

250

300

data

-π+p->p+*γsimulated 

o=180πφ, and 2=0.5 GeV2W=1.2125 GeV,Q

]2 [GeV2
sM

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ev
en

t

0

50

100

150

200

250

data

-π+p->p+*γsimulated 

o=220πφ, and 2=0.5 GeV2W=1.2125 GeV,Q

]2 [GeV2
sM

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ev
en

t

0

50

100

150

200

250

300

data

-π+p->p+*γsimulated 

o=260πφ, and 2=0.5 GeV2W=1.2125 GeV,Q

]2 [GeV2
sM

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ev
en

t

0

10

20

30

40

50

60

data

-π+p->p+*γsimulated 

o=300πφ, and 2=0.5 GeV2W=1.2125 GeV,Q

Figure 5.8: M2
s distributions for measured (black) and simulated γ∗n (p) → pπ−(p)

(red) events are plotted with the M2
s cut limits for W = 1.2125 GeV, Q2 = 0.5 GeV,

and cos θ∗ = −0.3 in φ∗π− = 100◦, 140◦, 180◦, 220◦, 260◦, and 300◦ bins individually.

inclusive cross section is calculated by

dσ2(W,Q2)
dWdQ2 = Nfull(W,Q2)− SratioNempty(W,Q2)

Lint∆W∆Q2εeff (W,Q2) , (5.8)

where Nfull(W,Q2) and Nempty(W,Q2) correspond to the full-and the empty-target

event yields in each (W,Q2) bin. These are inclusive scattering events which passed

the whole electron identification procedure described in Chapter 3. Furthermore,

Sratio and Lint are calculated by Eq. (5.4) and Eq. (5.3), respectively. ∆W and ∆Q2

represent the corresponding bin widths. In addition, εeff (W,Q2) is the acceptance

correction for each (W,Q2) bin calculated as

εeff (W,Q2) = Nrec(W,Q2)
Nthrown(W,Q2) , (5.9)

where Nrec denotes to the number of events that passed through the entire simulation

process as shown in Fig. 4.1, including the electron identification procedure, Nthrown

represents those events that are generated by Osipenko’s inclusive deuteron scattering

event generator [12]. The generator is based on the world data cross section and
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includes radiative effects. In order to save simulation time, the thrown events are

only generated in a looser fiducial-cut region compared to the data instead of in the

complete 4π phase space. In general, the inclusive cross section is calculated from

the world data by
dσ2(W,Q2)
dWdQ2 = Nthrown(W,Q2)

Ntotal∆W∆Q2 σint, (5.10)

where Ntotal is the total number of events generated in 4π phase space, Nthrown(W,Q2)

corresponds to the yield in each (W,Q2) bin, and σint is the integral cross section of the

world data. In this way, we compare the inclusive eD → e
′
X cross section calculated

by Eq. (5.8) from the experimental data with that calculated by Eq. (5.10) from the

world data parameterization. However, in this particular case, instead of comparing

Eq. (5.8) with Eq. (5.10) results, one can compare εeff (W,Q2) × Eq. (5.8) with the

εeff (W,Q2) × Eq. (5.10) results. For this particular event generator, εeff (W,Q2) can

also be written as

εeff (W,Q2) = Nrec(W,Q2)
Nthrown(W,Q2) =

Nrec(W,Q2)εosifid(W,Q2)
N osi
thrown(W,Q2) , (5.11)

where N osi
thrown(W,Q2) corresponds to the yield in each (W,Q2) bin with θ and φ

angles covered in Dr.Osipenko’s fiducial-cut region [12] and εosifid(W,Q2) is defined as
Nosi
thrown(W,Q2)

Nthrown(W,Q2) .

Multiplying Eq. (5.8) by εeff (W,Q2), the corresponding result is given by

εeff (W,Q2)× Eq. (5.8) =
Nfull(W,Q2)− Qfull

Qempty
Nempty(W,Q2)

Lint∆W∆Q2 . (5.12)

Furthermore, we multiply Eq. (5.10) by εeff (W,Q2), which is calculated by Eq. (5.11)

and leads to the whole expression

εeff (W,Q2)× Eq. (5.10) =
Nrec(W,Q2)εosifid(W,Q2)

N osi
thrown(W,Q2) × Nthrown(W,Q2)

Ntotal∆W∆Q2 σint

=
Nrec(W,Q2)εosifid(W,Q2)

N osi
thrown(W,Q2) ×

N osi
thrown(W,Q2)εosifidσint

εosifid(W,Q2)N osi
total∆W∆Q2

= Nrec(W,Q2)
N osi
total∆W∆Q2σ

osi
int,

(5.13)
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where εosifid is the acceptance factor of Osipenko’s event generator and σosiint is the

reduced integral cross section corresponding to the Osipenko’s fiducial-cut region.

So finally, we compare Eq. (5.12) and Eq. (5.13) directly, and the corresponding

comparison plots are shown in Fig. 5.9. Where the data normalized yields (black

stars) extracted from Eq. (5.12) project on W variable in each individual Q2 bin are

consistent with the model dependent Osipenko’s world-data parameterization results

calculated from Eq. (5.13) (magenta stars), which shows that overall luminosity and

hence the corresponding normalization procedure is reliable within the estimated

systematic error of 5% (see Chapter 6 )and can therefore be applied to the exclusive

scattering γ∗n (p)→ pπ−(p) process.
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Figure 5.9: W dependent normalized yield distributions in the eD → e
′
X process are

presented for data with black stars and for Osipenko’s world-data parameterization
with magenta stars in individual Q2 bins from 0.4 GeV2 to 1.7 GeV2 in steps of
∆Q2 = 0.1 GeV2.
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Chapter 6

Results

In a short summary, the whole data analysis process is shown as a flowchart in Fig. 6.1.

With all the information discussed in the previous chapters, the final cross sections

will be calculated in this chapter, from which the electromagnetic multipoles can be

extracted and finally passed through amplitudes analyses to calculate the N − N∗

transition form factors, which are beyond the scope of this thesis.

6.1 Cross Sections

The Exclusive Cross Section

The exclusive cross section of the γ∗n (p) → pπ− (p) process can be calculated from

the acceptance corrected yield of the exclusive events as

dσex

dΩ∗π−
= 1

Γυ (W,Q2)
d4σ

dWdQ2dΩπ∗−

= (∆Nfull (W,Q2, cos θ∗π− , φ∗π−)− Sratio∆Nempty (W,Q2, cos θ∗π− , φ∗π−))RBC

Γυ (W,Q2)ARC(W,Q2, cos θ∗π− , φ∗π−)∆W∆Q2∆ cos θ∗π−∆φ∗π−Lint
,

(6.1)

where ∆Nfull and ∆Nempty represent the numbers of the exclusive events inside each

4-dimensional bin (W,Q2, cos θ∗π− , φ∗π−) for the target with and without LD2, respec-

tively. ARC(W,Q2, cos θ∗π− , φ∗π−) is the radiative corrected acceptance-correction fac-

tor calculated from Eq. (5.7), and Sratio is the integrated Faraday Cup ratio, which

is calculated from Eq. (5.4). In addition, RBC is the bin-centering correction factor,

which is calculated from Eq. (5.1). Γυ (W,Q2) represents the virtual photon flux that

86



www.manaraa.com

Generator

Model

GSIM

GPP

RECSIS Raw Data

Analysis

Cross Section

Figure 6.1: The whole analysis process. Simulated physics events are generated
according to the reaction model MAID2000 and processed through the GSIM and
GPP detector simulation programs. The output of the detector simulation programs
looks like the raw data and is processed by the program RECSIS, which is also used
for the raw experimental data. Then the reconstructed simulated and experimental
events are analyzed through the analysis code to extract the cross section. In the
future, the extracted cross sections can be used as an input to the reaction model to
apply on the event generator to further improve the simulation results.
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is obtained from Eq. (1.30). ∆W , ∆Q2, ∆ cos θ∗π− and ∆φ∗π− are the bin widths of

the corresponding kinematic variables. Lint is the luminosity calculated by Eq. (5.3).

The Exclusive Quasi-free Cross Section

As described in Chapter 3, we extract the exclusive quasi-free events successfully by

applying a | ~Ps|< 200 MeV cut on the exclusive events. The exclusive quasi-free cross

section is then calculated by

dσqf

dΩ∗π−
= dσcut

dΩ∗π−
1

r (W,Q2, cos θ∗, φ∗) , (6.2)

where dσcut

dΩ∗
π−

is the cross section calculated after applying the | ~Ps|< 200 MeV cut and

r (W,Q2, cos θ∗, φ∗) obtained from Eq. (3.27) denotes the factor to correct good quasi-

free events outside the | ~Ps|< 200 MeV cut. Based on the yield of the cut-surviving

events, the cross section is extracted as

dσcut

dΩ∗π−
=

(∆N cut
full (W,Q2, cos θ∗, φ∗)− Sratio∆N cut

empty (W,Q2, cos θ∗, φ∗))RBC

Γυ (W,Q2)AcutRC(W,Q2, cos θ∗, φ∗)∆W∆Q2∆ cos θ∗∆φ∗Lint
, (6.3)

where “cut” presents the corresponding quantities that are calculated within the

| ~Ps|< 200 MeV cut condition.

From the above information, the full exclusive and quasi-free cross sections are

calculated in dependence on the angle φ∗π− . In this way, the physics information is

extracted conveniently by the angular dependencies of the cross sections. In the ∆

resonance region, the example φ∗π− dependent cross sections with high statistics at

W = 1.2125 GeV for different Q2 bins are shown in Figs. 6.2, 6.3, and 6.4. In

these figures, the full exclusive and quasi-free cross sections are represented by the

black points and green squares, respectively, as well as the corresponding system-

atic uncertainties (see Chapter 6.5) by the black bars in the bottom of each plot.

These cross-section points are distributed symmetrically around φ∗π− = 180◦; this

demonstrates the good quality of the measured cross sections. In addition, these φ∗π−
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Figure 6.2: Exclusive (black points) and quasi-free (green squares) cross sections in
µb/sr are represented for W = 1.2125 GeV and Q2 = 0.5 GeV2. The φ∗π− dependent
cross sections are illustrated in each cos θ∗π− bin. The magenta crosses and blue
triangles show SAID and MAID2000 model predictions. The color lines show fits to
the cross sections by the function “a+ b cos 2φ∗π− + c cosφ∗π−”. The black bars at the
bottom of each subplot represent the systematic uncertainty for each cross section
points.

dependent cross sections are fit by the function “a+ b cos 2φ∗π− + c cosφ∗π−”, which is

presented by the corresponding color line, to extract the physics quantities for the

amplitude analysis. In Figs. 6.2, 6.3, and 6.4, these cross sections are presented at

the same W = 1.2125 GeV bin but with gradually increasing Q2. The comparison

shows that these cross sections decrease with increasing Q2. Furthermore, in each

(W,Q2, cos θ∗π−) bin, there is not enough data to provide statistically trustworthy

cross sections at the very forward and backward φ∗π− angles.

In the second and the third resonance regions, examples of these cross sections
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Figure 6.3: Exclusive (black points) and quasi-free (green squares) cross sections in
µb/sr are represented for W = 1.2125 GeV and Q2 = 0.7 GeV2. The φ∗π− dependent
cross sections are illustrated in each cos θ∗π− bin. The magenta crosses and blue
triangles show SAID and MAID2000 model predictions. The color lines show fits to
the cross sections by the function “a+ b cos 2φ∗π− + c cosφ∗π−”. The black bars at the
bottom of each subplot represent the systematic uncertainty for each cross section
points.

are shown at W = 1.4875 GeV and W = 1.6625 GeV for the same Q2 = 0.5 GeV2

bin in Figs. 6.5 and 6.6, respectively. In the higher resonance region, we have even

less statistics, leading to φ∗π− dependent cross sections with typically less data points

at all θ∗π− angles. As it can be seen in Figs. 6.2, 6.3, 6.4, 6.5, and 6.6, in each

(W,Q2, cos θ∗π−) bin, the exclusive cross section is always larger than the quasi-free

cross section due to additional contributions from final state interactions.

Furthermore, the measured cross sections are compared with the predictions of

two models, SAID [4] and MAID2000 [8], which describe successfully the cross sec-
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Figure 6.4: Exclusive (black points) and quasi-free (green squares) cross sections in
µb/sr are represented for W = 1.2125 GeV and Q2 = 0.9 GeV2. The φ∗π− dependent
cross sections are illustrated in each cos θ∗π− bin. The magenta crosses and blue
triangles show SAID and MAID2000 model predictions. The color lines show fits to
the cross sections by the function “a+ b cos 2φ∗π− + c cosφ∗π−”. The black bars at the
bottom of each subplot represent the systematic uncertainty for each cross section
points.

tions of the single pion production off the free proton in the low-lying resonance

region. Examples of this comparison are shown in Figs. 6.2, 6.3, 6.4, 6.5, and

6.6. The magenta crosses and blue triangles represent the model predictions of SAID

and MAID2000 individually. In the ∆ resonance region, these cross sections are in

reasonable agreement with the predictions of the SAID model at forward θ∗π− an-

gles. However, at the backward θ∗π− angles, the measured cross sections are smaller

than the prediction of both models. Due to the lack of experimental data for the

γ∗n (p) → pπ− (p) process, the discrepancy between the model predictions and the
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measured cross-section results is not surprising. The models need neutron data to

improve their predictions.
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Figure 6.5: Exclusive (black points) and quasi-free (green squares) cross sections in
µb/sr are represented for W = 1.4875 GeV and Q2 = 0.5 GeV2. The φ∗π− dependent
cross sections are illustrated in each cos θ∗π− bin. The magenta crosses and blue
triangles show SAID and MAID2000 model predictions. The color lines show fits to
the cross sections by the function “a+ b cos 2φ∗π− + c cosφ∗π−”. The black bars at the
bottom of each subplot represent the systematic uncertainty for each cross section
points.

6.2 Kinematical Final State Interaction Contribution

With the measured fully exclusive and quasi-free differential cross sections, the kine-

matical final-state-interaction contribution factor RFSI can be calculated for each 4

dimensional bin (W,Q2, cos θ∗π− , φ∗π−). This factor accounts for the fraction of final

state interactions in the full exclusive process and is defined by

92



www.manaraa.com

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
quasi-free

exclusive

MAID2000

SAID

=-0.7*θ, cos2=0.5GeV2W=1.6625GeV, Q

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
=-0.5*θ, cos2=0.5GeV2W=1.6625GeV, Q

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
=-0.3*θ, cos2=0.5GeV2W=1.6625GeV, Q

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
=-0.1

*
θ, cos2=0.5GeV2W=1.6625GeV, Q

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
=0.1

*
θ, cos2=0.5GeV2W=1.6625GeV, Q

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
=0.3*θ, cos2=0.5GeV2W=1.6625GeV, Q

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
=0.5*θ, cos2=0.5GeV2W=1.6625GeV, Q

*
φ0 50 100 150 200 250 300 350

b
/s

r)
µ( π

Ω
/dσ

d

0

0.5

1

1.5

2

2.5

3
=0.7

*
θ, cos2=0.5GeV2W=1.6625GeV, Q

Figure 6.6: Exclusive (black points) and quasi-free (green squares) cross sections in
µb/sr are represented for W = 1.6625 GeV and Q2 = 0.5 GeV2. The φ∗π− dependent
cross sections are illustrated in each cos θ∗π− bin. The magenta crosses and blue
triangles show SAID and MAID2000 model predictions. The color lines show fits to
the cross sections by the function “a+ b cos 2φ∗π− + c cosφ∗π−”. The black bars at the
bottom of each subplot represent the systematic uncertainty for each cross section
points.

RFSI(W,Q2, cosθ∗π− , φ
∗
π−) =

dσqf

dΩ∗
π−

dσex

dΩ∗
π−

. (6.4)

From the physics perspective, kinematical final state interaction contribution fac-

tor RFSI should be φ∗π− independent. The ratio between RFSI(W,Q2, cos θ∗π− , φ∗π−)

and RFSI(W,Q2, cos θ∗π−) (i.e. φ∗π− integrated RFSI(W,Q2, cos θ∗π− , φ∗π−)) are plotted

against φ∗π− . Distribution examples for 1.2 GeV < W < 1.225 GeV and 0.6 GeV2 <

Q2 < 0.8 GeV2 are shown in Figs. 6.7 and 6.8 forW binning according toWi andWf ,

respectively. Each individual plot represents the ratios for different cos θ∗π− bins. It
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turns out that the ratios all distribute around one without a φ∗π− dependent structure

if binned in Wi rather than Wf . For the quasi-free events, binning data in Wf is the

best choice from what we have observed. However for the exclusive events, which

include final state interactions, it seams that binning the data with Wi is the better

choice. We will need further investigate and optimize the impact of the W binning

on the data extraction.
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Figure 6.7: The ratios of RFSI(Wi, Q
2, cos θ∗π− , φ∗π−) over RFSI(Wi, Q

2, cos θ∗π−) are
represented by Blue points for different φ∗π− at 1.2 GeV < Wi < 1.225 GeV and
0.6 GeV2 < Q2 < 0.8 GeV2. The individual plot shows the ratios for different cos θ∗π−
bins. The three lines from bottom to top correspond to 0.95, 1, and 1.05, respectively.

In order to quantify the dependence of kinematical final-state-interaction con-

tribution factors RFSI on the polar angle θ∗π− , the φ∗π− integrated RFSI versus θ∗π−

distributions are plotted for differentW and Q2 bins, which are shown in the Figs. 6.9,

6.10, and 6.11, respectively. The red and black points correspond to RFSI binned in

Wi and Wf , respectively. The dependence of kinematical final-state-interaction con-
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Figure 6.8: The ratios of RFSI(Wi, Q
2, cos θ∗π− , φ∗π−) over RFSI(Wi, Q

2, cos θ∗π−) are
represented by Blue points for different φ∗π− at 1.2 GeV < W < 1.225 GeV and
0.6 GeV2 < Q2 < 0.8 GeV2. The individual plot shows the ratios for different cos θ∗π−
bins. The three lines from bottom to top correspond to 0.95, 1, and 1.05, respectively.

tribution factor RFSI on the polar angle θ∗π− is consistent for both binnings, maybe

with the exception of the threshold W = 1.1125 GeV bin. This is consistent with

the fact that the Wf =
√

(pµ + πµ)2 for the exclusive events is less than the true W

value, which should include the undetected outgoing low momentum proton (below

the detector threshold). From Figs. 6.9, 6.10, and 6.11, it turns out that the final

state interaction contribution for the reaction γ∗n(p) → pπ−(p) with the “e1e” run

data kinematic coverage is on average about 10%− 20%.

6.3 Structure Functions

The above hadronic cross sections are fit in terms of cosφ∗π− and cos 2φ∗π− (Eq. (6.5))

to extract the structure functions. Each fitted function has three fit parameters
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Figure 6.9: RFSI versus θ∗π− distribution example for individual W bins, which are
increasing by 0.025 GeV in the range of 1.1 GeV < W < 1.725 GeV for 0.4 GeV2 <
Q2 < 0.6 GeV2. The red and black points correspond to RFSI binned in Wi and Wf ,
respectively.

a, b, and c, which correspond to the structure functions σT + εσL, σTT , and σTL,

respectively,

dσ

dΩ∗π−
= a+ b cos 2φ∗π− + c cosφ∗π− , a = σT + εσL, b = εσTT , and c =

√
2ε (1 + ε)σTL,

(6.5)

where ε is the transverse polarization of the virtual photon, “T” and “L” represent

transverse and longitudinal components, as well as “TT” and “TL” the interference

terms. The exclusive and quasi-free cross sections from Eq. (6.1) and Eq. (6.2),

respectively, are fit to extract the corresponding structure functions. Examples at

W = 1.2125 GeV with Q2 = 0.5 GeV2, Q2 = 0.7 GeV2, and Q2 = 0.9 GeV2 are

shown in Fig. 6.2. In addition, these structure functions are also compared with the
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Figure 6.10: RFSI versus θ∗π− distributions example for individual W bins, which are
increasing by 0.025 GeV in the range of 1.1 GeV < W < 1.725 GeV for 0.6 GeV2 <
Q2 < 0.8 GeV2. The red and black points correspond to RFSI binned in Wi and Wf ,
respectively.

predictions of the SAID and MAID2000 models. The solid black bars show the sys-

tematic errors that are calculated through error propagation procedure, see Chapter

6.5. The color lines represent the corresponding Legendre polynomial expansions for

π− angular momenta up to l = 2. These fits are discussed in the following section.

6.4 Legendre Polynomials Expansion

For each (W,Q2) bin, the extracted structure functions are functions of cos θ∗π− and

can be expressed in terms of Legendre polynomials. In this way, we can get insight

on the dominant wave contribution in a particular resonance region. The Legendre

polynomial expansion of the structure functions for π− angular momentum up to
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Figure 6.11: RFSI versus θ∗π− distributions example for individual W bins, which are
increasing by 0.025 GeV in the range of 1.125 GeV < W < 1.6 GeV for 0.8 GeV2 <
Q2 < 1.0 GeV2. The red and black points correspond to RFSI binned in Wi and Wf ,
respectively.

l = 1 (p-wave) can be expressed by

σT + εσL = A0P0(cos θ∗π−) + A1P1(cos θ∗π−) + A2P2(cos θ∗π−), (6.6)

σTT = B0P0(cos θ∗π−), (6.7)

σLT = C0P0(cos θ∗π−) + C1P1(cos θ∗π−), (6.8)

and up to l = 2 (d-wave) by

σT + εσL =A0P0(cos θ∗π−) + A1P1(cos θ∗π−) + A2P2(cos θ∗π−) + A3P3(cos θ∗π−)

+ A4P4(cos θ∗π−),
(6.9)

σTT = B0P0(cos θ∗π−) +B1P1(cos θ∗π−) +B2P2(cos θ∗π−), and (6.10)

σLT = C0P0(cos θ∗π−) + C1P1(cos θ∗π−) + C2P2(cos θ∗π−) + C3P3(cos θ∗π−), (6.11)
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Figure 6.12: Example of the cos θ∗π− dependent structure functions σT +εσL (top row),
σTT (middle row), and σTL (bottom row ) forW = 1.2125 GeV at Q2 = 0.5 GeV2 (left
column), Q2 = 0.7 GeV2 (middle column), and Q2 = 0.9 GeV2 (right column) that are
extracted for the exclusive (black points) and quasi-free (green squares) cross sections
and compared with the predictions of the SAID (magenta points) and MAID2000
(blue points) models. The solid black bars represent the corresponding systematic
uncertainties. The Legendre polynomial expansions are fitted to the corresponding
structure function data for π− angular momenta up to l = 2.

where Pl(cos θ∗π−) corresponds to the lth-order Legendre polynomial, and the coeffi-

cients Al, Bl, and Cl represent the Legendre moments, which can be associated with

the magnetic (Ml±), electric (El±), and scalar (Sl±) πN multipoles [58]. Figure 6.12

shows that the Legendre polynomial expansion of the structure functions up to l = 1

fails to provide an adequate description of the data, but up to l = 2 leads already to

a reasonable description.
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6.5 Systematic Uncertainty

The studied systematic uncertainties for this analysis are these uncertainties that are

inherent in the experiment and cannot be improved by repeating the experiment.

The systematic uncertainties are calculated for each 4-dimensional variable bin from

five different sources.

The first source of systematic uncertainties are the cuts used for particle identifi-

cation and event selection. It is not feasible to determine the ideal cut positions, so

we estimate how the final results depend on the shape and the position of a particular

cut.

Since the cross sections are presented in the CM frame, all measured particle

momenta from the lab frame have to be boosted to the CM frame through with the

boost vector ~β, which can be calculated either from the initial particle (nµ and qµ)

or final particles (π−µ and pµ) four momenta. Even though we finally use ~βf , which

is calculated from the final state particles, the influence on the final cross sections by

using different ~βs contributes to the systematic uncertainty. Hence, the second source

of systematic uncertainty is determined by estimating how much the final results are

influenced by the choice of different boost vectors.

In order to isolate the exclusive quasi-free process γ∗n(ps)→ pπ−(ps), the missing

momentum Ps distribution needs to be compared with the simulated Fermi momen-

tum of the spectator. The Fermi momentum distribution of the independent “specta-

tor” proton is generated by the CD-Bonn potential [28] in the event generator. The

CD-Bonn potential is considered to be more accurate than other models, such as the

Pairs [42] and Hulthen [22] potentials, but for the purpose of the systematic uncer-

tainty study, all three deuteron potential distributions are compared to determine the

third source of the systematic uncertainty.

The bin centering correction factor is calculated from the cross-section function of

a reaction model, so the influence of applying RBC , as it is calculated from different

100



www.manaraa.com

models, on the cross sections is the fourth source of the systematic uncertainty.

Last but not least, the normalization uncertainty extracted from the comparison

of our measured inclusive cross sections with the world data parameterization results

accounts for the last source of the systematic uncertainty.

To study now cut are influencing the results, we typically vary the chosen cuts

by making them tighter or looser. So the final results for the systematic uncertainty

found due to variation of cuts is determined as the RMS of the deviations of the

varied cross section from the original one by

∆RMS
cuti =

√
∆2
tight + ∆2

loose

2 , (6.12)

where ∆tight and ∆loose correspond to the difference between the cross sections with

the chosen cut and the varied one.

The following cuts are studied to determine the final systematic uncertainty.

Electron ID

• θCC cut

We vary the θCC cut within

θCCµ − 3σ < θCC < θCCµ + 2σ (tight) and

θCCµ − 5σ < θCC < θCCµ + 4σ (loose),
(6.13)

where µ (θCCµ) and σ are the original cut parameters, which are introduced in

the electron identification section of Chapter 3. The same procedure is applied

to the simulation. With the tight or loose cut conditions, the cross sections are

calculated exactly in the same way as the above reported final cross section.

The systematic uncertainty is determined for each 4-dimensional variable bin,

and the average systematic uncertainty over all bins due to the θCC cut is 0.78%.
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• Electron sampling fraction cut

Similar to the θCC cut, variations of the sampling fraction cut are represented

by

(Etotal
pe

)µ − 2σ < Etotal
pe

< (Etotal
pe

)µ + 2σ (tight) and

(Etotal
pe

)µ − 4σ < Etotal
pe

< (Etotal
pe

)µ + 4σ (loose),
(6.14)

where µ and σ are the original sampling fraction cut parameters. The average

systematical uncertainty over all bins due to this cut is 1.26%.

• Electron fiducial cut

Electron fiducial tight and loose cut definitions are

(sector − 1) ∗ 60◦ −∆φe + 1◦ < φsectore < (sector − 1) ∗ 60◦ + ∆φe − 1◦(tight) ;

(sector − 1) ∗ 60◦ −∆φe − 1◦ < φsectore < (sector − 1) ∗ 60◦ + ∆φe + 1◦(loose) ,

(6.15)

where ∆φe is defined by Eq. (3.16). The electron fiducial cuts contribute 2.10%

on average to the final systematic uncertainties.

π− ID

• π− ∆T cut

The pion identification is based on the timing ∆T cut, and the chosen cuts are

listed in Eq. (3.10). In order to determine the influence of the ∆T cut variation

on the final cross sections, we tighten or loosen the chosen cut as

(∆Tπ−)µ − 2σ < ∆Tπ− < (∆Tπ−)µ + 2σ (tight) and

(∆Tπ−)µ − 4σ < ∆Tπ− < (∆Tπ−)µ + 4σ (loose),
(6.16)

where µ and σ are the originally chosen cut parameters. Figure 6.13 shows tight,

chosen, and loose cuts together on the π− ∆T distributions for all sectors. The

average systematic uncertainty over all bins due to this cut is 1.78%.
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Figure 6.13: The ∆T distribution of pions in six sectors. The black, blue, and red
lines represent the 4σ, 3σ, and 2σ cut boundaries, respectively.

• π− fiducial cut

We vary the π− fiducial cut within

φminπ− + 1◦ < φπ− < φmaxπ− − 1◦ (tight) and

φminπ− − 1◦ < φπ− < φmaxπ− + 1◦ (loose) ,
(6.17)

where φminπ− and φmaxπ− are described in Eq. (3.19). The average systematic un-

certainty over all bins generated by this source is 1.73%.

Proton ID

• Proton ∆T cut

Similar to the pion ∆T cut procedure, we tighten or loosen the chosen proton
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Figure 6.14: The ∆T distribution of protons in six sectors. The black, blue, and red
lines represent the 4σ, 3σ, and 2σ cut boundaries, respectively.

∆T cut described in Eq. (3.13) within

(∆Tproton)µ − 2σ < ∆Tproton < (∆Tproton)µ + 2σ (tight); and

(∆Tproton)µ − 4σ < ∆Tproton < (∆Tproton)µ + 4σ (loose),
(6.18)

where µ and σ are the originally chosen cuts parameters. All cuts are shown in

Fig. 6.14. The average systematic uncertainty over all bins contributed due to

this cut is 1.39%.

• Proton fiducial cut

We tighten or loosen the chosen proton fiducial cuts presented in Eq. (3.23)

within

φminproton + 1◦ < φproton < φmaxproton − 1◦ (tight) and

φminproton − 1◦ < φproton < φmaxproton + 1◦ (loose) ,
(6.19)
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which are shown in Fig. 6.15 as black and magenta lines individually for all

sectors. The average systematical error over all bins due to the proton fiducial

cut is 2.39%.
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Figure 6.15: (Color online) The φp versus θp distributions for six sectors without
proton fiducial cuts. The magenta, blue, and black lines represent loose, chosen, and
tight proton fiducial cuts, respectively.
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Figure 6.16: (Color online) The spectator missing mass squared M2
s distributions for

data (black curve) and simulation (blue curve). The black, red, and blue vertical
lines represent loose, chosen, and tight M2

s cuts, respectively.
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Event Selection

• M2
s cut

We varied the chosen M2
s cut limits within

0.840 GeV < M2
s < 0.919 GeV (tight); and

0.811 GeV < M2
s < 0.955 GeV (loose),

(6.20)

which are all shown in Fig. 6.16. The average systematic uncertainty over all

bins due to this cut is 2.29%.

• | ~Ps| cut

We modified the tight and loose | ~Ps| cuts within

0.18 GeV < | ~Ps| (tight); and

0.22 GeV < | ~Ps| (loose),
(6.21)

which are all shown with the chosen | ~Ps|> 0.2 GeV cut in Fig. 6.17. The | ~Ps|

cut is on average responsible for 2.21% of the final systematic uncertainty.
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Figure 6.17: (Color online) The spectator missing momentum | ~Ps| distributions for
data (black curve) and simulation (blue curve). The black, red, and blue vertical
lines represent loose, chosen, and tight | ~Ps| cuts, respectively.
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Boost

In the “Boost the kinematic variables” section of Chapter 1, we introduce the boost

method. We boost all particle momenta measured in the lab frame into the CM

frame, where the net momentum of the final proton and π− is zero. The boost vector
~β is calculated from the final particles (proton and π−) as

~βf = ~p+ ~π−

Ep + Eπ−
, (6.22)

where Ep and Eπ− are the energies of the proton and π−, respectively. In addition, ~β

can be calculated from the initial particles (virtual photon and moving neutron) as

~βi = ~q + ~n

ν + En
with

~n = −~ps and

ν = Ee − Ee′ ,

(6.23)

where ν is the transferred electron energy and En the energy of the initial off-shell

neutron. Even though finally ~βf is applied in the boost procedure, we want to quantify

the difference between boosting with ~βi or ~βf by constructing the initial neutron four

momentum by nµ = (− ~Ps,Mn) and En =
√

(− ~Ps)2 + (Mn)2, which are introduced in

Chapter 1. Since the initial neutron is off-shell, the neutron mass (Mn) is not well

defined and can be varied empirically follows

Mn = mn, (6.24)

Mn = mn − 2K − 2MeV, (6.25)

Mn = mn −K − 1MeV, (6.26)

Mn = mn +K + 1MeV, (6.27)

Mn = mn + 2K + 2MeV, (6.28)

where K = (| ~Ps|)2

2mn and mn is neutron rest mass. Here, the Eq. (6.25) and Eq. (6.28)

show two extreme cases of distributing the off-shellness. So we calculate the RMS of
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the deviations of these cross sections that are calculated by boosting with βi from βf ,

where βi is calculated by setting Mn to the different values according to Eqs. (6.24)

to (6.28). The systematic uncertainty average over all bins due to different boosts is

2.12%.

Deuteron Potential

We generate the spectator momentum distribution with the CD-Bonn deuteron po-

tential, which allows us to isolate the exclusive quasi-free process and to calculate

the kinematical final-state-interaction contribution factor RFSI . There are also other

popular deuteron potential models available, as for example the Paris and Hulthen

potentials. So we plot the normalized cumulative “spectator” proton momentum

distributions based on the deuteron potentials of these three models in Fig. 6.18,

and compare the ratios corresponding to the integrals of these distributions from

|~p|= 0 GeV/c to |~p|= 0.2 GeV/c and from |~p|= 0 GeV/c to |~p|= 1 GeV/c to get the

RMS of the deviations impacted by the CD-Bonn potential from the other two po-

tentials. The systematic uncertainty due to these different deuteron potential models

is 3.2% when averaged over all every 4-dimensional bins.

Bin Centering Correction

In the previous Chapter, the MAID2000 model was selected to calculate the bin cen-

tering correction factor RBC . In Fig. 4.2a it is shown that the MAID2000 model

describes the experimental data better than other MAID versions. However, for

the systematic uncertainty study, the factor RBC is calculated with MAID98 and

MAID2007 separately and applied to the uncorrected cross sections. The difference

between these RBC corrected cross section is then used to quantify the systematic

uncertainty due to RBC being calculated from different versions of the MAID model.

The average systematic uncertainty found by the deviation of the cross sections cor-
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Figure 6.18: The normalized cumulative “spectator” proton momentum distributions
from different deuteron potentials. The black, blue, and red points represent the
CD-Bonn, Paris, and Hulthen potentials, respectively.

rected by RBC calculated by MAID2000 from these corrected by RBC calculated by

MAID98 is 0.55% on average. Even though the MAID2007 model does not describe

the experimental data well at all, the RBC calculated by this version would still only

contribute 1.39% to the final systematic uncertainty.

Radiative Correction

The cross sections are represented by the variables Wf , Q2, cos θ∗π− , and φ∗π− . The

radiative correction applied by the Mo and Tsai [48] approach is carried out to elim-

inate the influence on the Q2 distribution. The above quasi-free differential cross

sections with and without radiative correction are shown in Fig. 6.19 as red points

and black squares, respectively. The difference between these two cross sections, ac-
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counting for the radiative correction contribution, is on average about 2.0%. The

average systematic uncertainty of the radiative correction is set to 1.0% .
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Figure 6.19: The φ∗π− dependence of the exclusive cross sections with and without
radiative correction are marked as red points and black squares, respectively for an
example at W = 1.2125 GeV and Q2 = 0.7 GeV2. The individual plots correspond to
different cos θ∗π− bins.

Normalization

In order to quantify the systematic uncertainty of the overall luminosity, a comparison

of the measured inclusive cross sections and the Osipenko’s world-data parameteriza-

tion results is carried out. Since the overall luminosity is the same for all W and Q2

bins and due to the relatively large uncertainty of the Osipenko’s model for different

W and Q2 values, the W and Q2 weighted average ratios of the Osipenko world-

data parameterization results (Eq. (5.13)) and the measured inclusive cross sections

(Eq. (5.12)) are shown as the red dot lines in Figs. 6.20 and 6.21 for all six sectors,
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separately. It turns out that both kinds of ratios deviate from “1” by no more than

5%. Due to the model dependence of the Osipenko event generator, we pick up the

elastic normalization systematic uncertainty of 5% from the CLAS “e1e” data run

with hydrogen target [44] for this analysis, which is consistent with the Osipenko

driven uncertainty. It is used as the value of the overall normalization uncertainty,

and includes target geometry, target density fluctuation, Faraday cup uncertainties.
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Figure 6.20: The ratios of W integrated inclusive cross sections of σOsipenko over σY e
marked as black stars are plotted against Q2. The red dot lines represent the Q2

averaged ratios.

Summary

Summing over all of the above systematic uncertainty sources listed in the Tab. 6.1,

the total average systematic uncertainty is 8.26%. From the above discussion, the

total systematic uncertainty can be calculated bin by bin

∆RMS =

√√√√ 9∑
i

(∆RMS
cuti )2 + (∆RMS

boost )2 + ∆potential
2 + ∆RBC

2 + ∆Rad
2 + ∆normalization

2,

(6.29)
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Figure 6.21: The ratios of Q2 integrated inclusive cross sections of σOsipenko over σY e
marked as black stars are plotted against W . The red dot lines represent the W
averaged ratios.

Table 6.1: Summary of sources of the average systematical uncertainty.

Sources Uncertainty (%)
Electron θCC cut 0.78
Electron SF cut 1.26

Electron fiducial cut 2.10
Proton ∆T cut 1.39

Proton fiducial cut 2.39
Pion ∆T cut 1.78

Pion fiducial cut 1.73
M2

s cut 2.29
ps cut 2.21
Boosts 2.12

Potential 3.2
Bin center correction 0.55
Radiative correction 1.0

Normalization 5.0
Total 8.39

where for each variable bin ∆RMS
cuti corresponds to the RMS of the cross-section devia-

tions of the modified cut (tight or loose) from the chosen cut and ∆RMS
boost to the RMS

of deviations of the cross sections between different boost vectors ~βi and ~βf . ∆potential
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corresponds to the deviations of the CD-Bonn potential from other potentials, which

is 3.2% for every variable bin, ∆Rad to the radiative correction, and ∆normalization to

the CLAS standard normalization uncertainty, which is 5% for every variable bin.

∆RMS is shown as back bars in the final hadronic differential cross section plots in

Figs. 6.2, 6.3, 6.4, 6.5, and 6.6.

Error Propagation

The above systematic uncertainty is calculated for the cross section. In order to have

the systematic uncertainty for the structure functions, we apply the same procedure

to the φ∗π− dependent cross section fit (a+ b cos 2φ∗π− + c cosφ∗π−) for the chosen cross

sections and all other cross-section variations, corresponding to the different cuts,

boost, potential, bin centering corrections, and normalizations. Then the RMS of

the structure functions is given by Eq. (6.29) bin by bin for three sets of φ∗π− bins

(∆φ∗π− = 40◦, ∆φ∗π− = 45◦, and ∆φ∗π− = 60◦), respectively. The smallest RMS of the

three sets of φ∗π− bins, the RMS of ∆φ∗π− = 40◦ bins, is set to the final systematic

uncertainty of the structure functions, and is shown as black bar for each data point

in Fig. 6.12. The average of systematic uncertainties over Q2 and cosθ∗π− for the

structure functions that are shown in Fig. 6.12 is 11.17% in theW = 1.2125 GeV bin.
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Chapter 7

Summary and Conclusions

The JLab CLAS “e1e” experiment provides data to extract the differential cross

sections of the process γ∗n(p)→ pπ−(p), which is π− electroproduction off the neutron

in the deuterium, with in the corresponding kinematic coverage W = 1.1 − 1.9 GeV

and Q2 = 0.4 − 1.0 GeV2. The experimental data were analyzed in such a way that

all stages of this analysis were processed through a series of data consistent tests

and cross-checks to provide reliable measured results. The reliability of the absolute

normalization was confirmed by the agreement between the measured inclusive cross

sections and the available world-data’s parameterization results.

The existing γ∗n → pπ− event generator was modified to include the specta-

tor (proton) information based on the CD-Bonn potential [28] to simulate the real

quasi-free process. With this method, the exclusive quasi-free process is isolated suc-

cessfully as demonstrated by the comparison of the spectator momentum distribution

of simulation with the measured data, and the kinematical final-state-interaction con-

tribution factor RFSI is extracted directly from the experimental data according to

the ratio between the exclusive quasi-free and full cross sections. The kinemati-

cal final state interaction contributions in π− electroproduction is on average about

10% − 20% for the above kinematic coverage. Furthermore, we quantify that the

influence of off-shell effects on the final cross section is marginal.

These are the first results for the full exclusive and quasi-free electroproduction

cross sections off the bound neutron in the above mentioned kinematic region. These

cross sections provide input for a combined analysis of pion electroproduction off the
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free proton, the bound proton, and the bound neutron under the same experimental

conditions, which is a unique way to extract in the experimentally best possible

way information about the off-shell and final-state-interaction effects in deuterium

that must be considered in order to extract the free neutron information. These

cross sections enrich the database for further development of the reaction theory for

exclusive reactions off nucleons bound in deuterium.

Additionally, the associated unpolarized structure functions σT + εσL, σTT , and

σTL have been extracted from the φ∗π− dependence of the differential cross sections

with appropriate systematic uncertainty estimates.

The statistics for the γ∗n(p)→ pπ−(p) channel is limited due to the short exper-

iment time and the relatively low detector acceptance for the π− particle. In order

to get even better fit results in both the very forward and the very backward polar

and azimuthal angles of π−, particularly in the higher resonance region, it would be

valuable to run further deuterium target experiments with the upgraded CLAS12

detector, at Q2 up to 11 GeV2. This would also allow us to improve our knowledge

of the Q2 evolution of the transition form factors off the bound nucleon system, and

would ultimately grant access to the isospin-dependent structure of baryons.
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Appendix A

Parameter Tables

Table A.1: Parameters of pion θ versus p cut functions.

Sector Position C0 C1 C2 C3 C4
1 upper 96.090 8.000 0.472 0.250 0.117

lower 86.090 8.000 0.472 0.250 0.117
2 upper 38.152 3.699× 10−5 5.408× 10−6 1.812× 10−7

lower 33.652 3.699× 10−5 5.408× 10−6 1.812× 10−7

3 upper 116.152 3.699× 10−5 5.408× 10−6 0.1 1.812× 10−7

lower 107.152 3.699× 10−5 5.408× 10−6 0.08 1.812× 10−7

4 upper 113.152 3.699× 10−5 5.408× 10−6 0.15 1.812× 10−7

5-1 upper 118.152 6.699× 10−5 5.408× 10−6 0.2 1.812× 10−7

5-2 upper 108.152 3.699× 10−5 5.408× 10−6 0.2 1.812× 10−7

lower 96.152 3.699× 10−5 5.408× 10−6 0.03 1.812× 10−7

5-3 upper 39.652 3.699× 10−5 5.408× 10−6 0.01 1.812× 10−7

lower 35.652 3.699× 10−5 5.408× 10−6 0.01 1.812× 10−7

6 upper 106.152 3.699× 10−5 5.408× 10−6 0.15 1.812× 10−7

Table A.2: Parameters of proton θ versus p cut functions.

Sector Position C0 C1 C2 C3 C4
2 upper 26.509 -116.557 175.167 -64.472

lower 26.509 -116.557 175.167 -64.572
5-1 upper 88.042 -0.321 0.070 -46.934

lower 87.094 -0.371 0.065 -50.990
5-2 upper 31.248 -135.817 198.038 -65.168 0.045

lower 31.248 -135.817 198.038 -69.468 -0.010

122



www.manaraa.com

Table A.3: ∆T shift parameters.

Sector Counter ∆t1 (ns) ∆t2 (ns) ∆t3 (ns) ∆t4 (ns) ∆t5 (ns)

1

25 0.34
36 -0.36
43 -0.04
41 3.63 0.18 -2.96
42 -0.08 -2.14
45 4.72 3.16 0.32 -3.04
46 -0.03 -1.02 -2.15 -5.82
47 5.97 5.00 0.22

2

24 1.18
22 0.09
27 -0.46
29 -0.37
36 -0.46
37 0.25
40 2.90 -0.10 -2.74 -7.17
41 8.40 7.34 4.10 3.05 -1.80
42 4.78 0.45
43 10.81 8.22 6.94
44 6.69 3.93
45 5.30 0.25
46 8.05 0.85
47 0.11 -1.66

3

11 0.34
23 0.21
24 -0.33
25 3.42
30 -0.16
35 -0.40
38 -0.53
36 -0.18
40 -0.10 -3.95
41 -0.05 -0.86
42 -2.03 -5.50
43 -0.50 -3.60
44 -8.19 -10.52
46 -0.60 -1.44 -3.35
47 4.62 2.00 -0.61
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Table A.4: ∆T shift parameters continued.

Sector Counter ∆t1 (ns) ∆t2 (ns) ∆t3 (ns) ∆t4 (ns)

4

22 0.08
23 -0.35
25 -0.37
26 -0.27
27 -0.48
37 -0.42
38 -0.53
39 4.24
40 -0.21
41 0.59
42 2.95 0.04
43 2.99 1.29 -0.99
44 -0.12
45 0.07
46 1.19 0.17
47 0.04

5

22 0.14
24 0.01
25 0.08
37 0.43
40 4.65 1.44
41 -0.44
42 4.23 1.17 0.28 -1.86
43 2.37 0.46
44 0.76 -0.73
45 0.08
46 -2.11
47 -2.06 -4.10

6

25 -2.11
31 1.55
40 3.90 0.05
43 -1.77
44 1.37 -0.06
45 3.69 0.10
47 5.26 2.63 0.85
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Table A.5: Parameters of the proton momentum correction function.

parameter value
C0 −2.01369× 10−2

C1 2.36456× 10−4

C2 2.18450× 10−6

C3 1.29756× 10−2

C4 −2.00838× 10−4

C5 1.88744× 10−6

C6 1.03155× 10−2

C7 −7.19808× 10−5

C8 6.11292× 10−7

Table A.6: Parameters of pion θ versus φ cut functions.

parameter P0 P1 P2
data C0max 25.1028 -0.248504 -0.470204

C0min -25.1039 0.249551 0.470333
C2 20.4540 2.52675 3.34473
C1 0.255487

simulation C0max 27.0012 -0.741629 -0.723387
C0min -27.5001 0.777486 0.734897
C2 14.1899 0.999445 2.84491
C1 0.135487

Table A.7: Parameters of proton θ versus φ cut functions.

sector function P0 P1 P2
1 φmax 24.2559 0.0840516 -9.00173

φmin -24.3303 0.1096713 -8.85532
2 φmax 83.1846 0.0967659 0.376712

φmin 36.5613 0.129967 -7.20855
3 φmax 144.4382 0.0895825 10.7034

φmin 95.0490 0.0955602 6.03828
4 φmax 203.271 0.11877 6.32992

φmin 155.694 0.090633 11.05086
5 φmax 264.817 0.112822 10.7241

φmin 215.618 0.122742 4.34678
6 φmax 323.471 0.113954 10.9227

φmin 275.005 0.0729742 24.2907
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